the preparation of tri- or tetrasubstituted fluoroalkenes.
Consequently, stereocontrolled and practical access to tri-
and tetratetrasubstituted fluoroalkenes remains a synthetic
challenge, in particular when one or more of the substituents
are aryl groups.6a,8-10
CF3CH2I.11 These alkenes are ideal substrates to undergo
carbolithiation for the following reasons: (a) electron-
deficient character and (b) polarization due to the +Iπ effect
of the fluorine atoms,1a the resonance effect (+R) of
fluorine,1a as well as the ꢀ-effect of the silicon.12 Upon
carbolithiation, the generated carbanion is stabilized by the
R effect of the silicon12 and the inductive effect (-Iσ)1a and
negative hyperconjugation of fluorine.1a,13 Finally, the loss
of a fluorine atom as a leaving group via ꢀ elimination would
produce silylated fluoroalkenes (3 or 4). While literature
Herein, we document a novel stereocontrolled method for
the preparation of tri- and tetrasubstituted fluoroalkenes using
an addition/elimination reaction of organolithium reagents
to silylated ꢀ,ꢀ-difluorostyrene derivatives (1 or 2) followed
by a bromination/desilicobromination reaction (Scheme 1).
precedence indicated that this would be
a viable
strategy,9e,14,15 questions remained as to whether or not this
reaction would present useful selectivity and if it would be
possible to later substitute the silyl group with a more
versatile substituent.
Scheme 1. Stereoselective Approach to Bromofluoroalkenes
Table 1. Initial Results: Addition/Elimination Sequencea
entry
substrate
R
product
yieldb (%)
Z/Ec
This sequence provides an effective synthetic approach to a
wide range of bromofluoroalkenes (5) with moderate to
excellent stereocontrol (up to >97/3). In addition, the
bromofluoroalkenes can be used in Pd-catalyzed transforma-
tions giving access to both tri- and tetrasubstituted fluoro-
alkenes.
1
2
3
4
5
6
1a
t-Bu
n-Bu
Ph
t-Bu
n-Bu
Ph
3a
3b
3c
4a
4b
4c
81
86
76
72
61
63
87/13
80/20
50/50
90/10
83/17
75/25
2a
a Reaction conditions: 1 or 2 (1 mmol), RLi (2 mmol), THF (7 mL) at
-78 °C to rt for 1 h (see the Supporting Information for details); b Isolated
yield of the combined isomers; c Determined by 19F NMR and/or 1H NMR
spectroscopic analysis of the crude product.
In our initial plan, we envisioned that silylated ꢀ,ꢀ-
difluorostyrene derivatives (1 or 2) would be suitable
substrates for an addition/elimination reaction with organo-
lithium reagents. Various derivatives of 1 and 2 are readily
available in two steps from commercially available
In our initial screening experiments, we found that the
addition/elimination proceeded readily at -78 °C in THF
with different organolithium reagents (Table 1).15-17 In all
cases, both geometrical isomers were easily separable by
(7) Review: Flynn, A. B.; Ogilvie, W. W. Chem. ReV. 2007, 107, 4698–
4745. Highlights: Reiser, O. Angew. Chem., Int. Ed. 2006, 45, 2838–2840.
(8) For access to trisubstituted fluoroalkenes, see, for example: (a) Okada,
M.; Nakamura, Y.; Saito, A.; Sato, A.; Horikawa, H.; Taguchi, T.
Tetrahedron Lett. 2002, 43, 5845–5847. (b) Pacheco, C.; Gouverneur, V.
Org. Lett. 2005, 7, 1267–1270. (c) Dutheuil, G.; Paturel, C.; Lei, X.; Couve-
Bonnaire, S.; Pannecouke, X. J. Org. Chem. 2006, 71, 4316–4319. (d)
Andrei, D.; Wnuk, S. F. J. Org. Chem. 2006, 71, 405–408. (e) Akana, J. A.;
Bhattacharya, K. X.; Mu¨ller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007,
(11) (a) Anilkumar, R.; Burton, D. J. J. Fluorine Chem. 2005, 126, 457–
463. (b) Okano, T.; Ito, K.; Ueda, T.; Muramatsu, H. J. Fluorine Chem.
1986, 32, 377–388.
129, 7736–7737
.
(12) (a) Chan, T. H.; Fleming, I. Synthesis 1979, 761–786. (b) Colvin,
E. W. Silicon Reagents in Organic Synthesis; Academic Press Limited:
London, 1988;. and references therein.
(9) For access to tetrasubstituted fluoroalkenes, see: (a) Fish, P. V.;
Reddy, S. P.; Lee, C. H.; Johnson, W. S. Tetrahedron Lett. 1992, 33, 8001–
8004. (b) Kim, B. T.; Min, Y. K.; Asami, T.; Park, N. K.; Kwon, O. Y.;
Cho, K. Y.; Yoshida, S. Tetrahedron Lett. 1997, 38, 1797–1800. (c) Percy,
J. M.; Wilkes, R. D. Tetrahedron 1997, 53, 14749–14762. (d) Lin, J.; Welch,
J. T. Tetrahedron Lett. 1998, 39, 9613–9616. (e) Huang, X.-h.; He, P.-y.;
Shi, G.-q. J. Org. Chem. 2000, 65, 627–629. (f) Jin, Y.; Williams, D. C.;
Croteau, R.; Coates, R. M. J. Am. Chem. Soc. 2005, 127, 7834–7842. (g)
Zoute, L.; Dutheuil, G.; Quirion, J.-C.; Jubault, P.; Pannecoucke, X.
Synthesis 2006, 3409–3418. (h) Hara, S.; Guan, T.; Yoshida, M. Org. Lett.
2006, 8, 2639–2641. (i) Guan, T.; Yoshida, M.; Hara, S. J. Org. Chem.
(13) Dixon, D. A.; Fukunaga, T.; Smart, B. E. J. Am. Chem. Soc. 1986,
108, 4027–4031
.
(14) (a) Hayashi, S.-i.; Nakai, T.; Ishikawa, N. Chem. Lett. 1980, 935–
938. (b) Martin, S.; Sauveˆtre, R.; Normant, J.-F. Tetrahedron Lett. 1983,
24, 5616–5618. (c) Martin, S.; Sauveˆtre, R.; Normant, J.-F. J. Organomet.
Chem. 1984, 264, 155–161. (d) Lee, J.; Tsukazaki, M.; Snieckus, V.
Tetrahedron Lett. 1993, 34, 415–418. (e) Be´gue´, J.-P.; Bonnet-Delphon,
D.; Bouvet, D.; Rock, M. H. J. Org. Chem. 1996, 61, 9111–9114. (f)
Ichikawa, J.; Wada, Y.; Fujiwara, M.; Sakoda, K. Synthesis 2002, 1917–
`
2007, 72, 9617–9621. (j) Pomeisl, K.; Eejka, J.; Kv´ıe`ala, J.; Paleta, O. Eur.
1936.
J. Org. Chem. 2007, 5917–5925
.
(15) Ichikawa, J.; Fukui, H.; Ishibashi, Y. J. Org. Chem. 2003, 68, 7800–
(10) A notable exception is when the fluoroalkene is part of a cyclic
system; see, for example: (a) Hossain, M. A. Tetrahedron Lett. 1997, 38,
49–52. (b) Ichikawa, J.; Wada, Y.; Kuroki, H.; Mihara, J.; Nadano, R. Org.
7805
.
(16) The reaction also proceeds in Et2O with similar results
.
(17) Other nucleophiles such as Grignard or organozinc reagents do not
react under these conditions
Biomol. Chem. 2007, 5, 3956–3962
.
.
682
Org. Lett., Vol. 11, No. 3, 2009