ORGANIC
LETTERS
2009
Vol. 11, No. 4
895-898
Synthesis of Diazacalix[8]arene and
Triazacalix[12]arene Methyl Ethers via
Intramolecular Aryl Amination
Kenneth V. Lawson, Ashlee C. Barton, and John D. Spence*
Department of Chemistry, California State UniVersity, Sacramento, 6000 J Street,
Sacramento, California 95819
Received December 15, 2008
ABSTRACT
Azacalixarenes derived from p-tert-butylphenol are generated by an intramolecular aryl amination strategy as the ring-closing step. The reaction
produces the first examples of larger p-tert-butylcalixarenes with regioselective substitution of bridging methylenes with nitrogen atoms.
Macrocyclic oligomers of p-alkylphenols and formaldehyde,
the original members of the calix[n]arene family,1 have
received widespread interest as molecular hosts. The one-
pot syntheses of p-tert-butylcalix[4], [6], and [8]arenes have
made these major calixarenes the most thoroughly studied
analogs. The small cavity size of p-tert-butylcalix[4]arene
imparts the greatest amount of conformational rigidity,
leading to the well-defined cone, partial cone, 1,2-alternate,
and 1,3-alternate conformations. p-tert-Butylcalix[8]arene,
on the other hand, is much more fluid in solution as a result
of a larger annulus and is believed to exist in either a pleated
loop2 or pinched double cone conformation.3 Furthermore,
rich functionalization strategies are available for p-tert-
butylcalix[n]arenes along their upper rim p-alkyl and lower
rim phenolic groups to fine-tune their conformational and
binding properties.
Recently focus has shifted to explore functionalization of
the bridging methylene groups to develop heteroatom-bridged
derivatives of calix[n]arenes.4 Replacement of the bridging
methylene groups with heteroatoms can alter the conforma-
tional properties of the macrocycle through changes in bond
lengths and angles associated with the heteroatom in addition
to participation of the heteroatom in hydrogen bonding along
the lower rim. Furthermore, the heteroatom provides ad-
ditional binding sites to the macrocycle and, in the case of
nitrogen and sulfur, new avenues to further functionalize the
bridge position. Heteroatom-bridged derivatives of the parent
p-tert-butylcalix[4]arene 1 (Figure 1) include mono-, di-, tri-,
and tetrathiacalix[4]arene 2,5 tetrasilacalix[4]arene 3,6 and
tetraazacalixarene 4,7 as well as the expanded homooxa- and
(1) For reviews on calixarenes, see: (a) Gutsche, C. D. Calixarenes An
Introduction, 2nd ed.; Stoddart, J. R., Ed.; Royal Society of Chemistry:
Cambridge, UK, 2008. (b) Calixarenes 2001; Asfari, Z., Bo¨hmer, V.,
Harrowfield, J., Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 2001.
(4) For reviews, see: (a) Ko¨nig, B.; Fonseca, M. H. Eur. J. Inorg. Chem.
2000, 2303–2310. (b) Wang, M.-X. Chem. Commun. 2008, 4541–4551.
(c) Maes, W.; Dehaen, W. Chem. Soc. ReV. 2008, 37, 2393–2402. (d) Tsue,
H. Top. Heterocycl. Chem. 2008, 17, 73–96.
(2) (a) Gutsche, C. D.; Gutsche, A. E.; Karaulov, A. I. J. Inclusion
Phenom. 1985, 3, 447–451. (b) Gutsche, C. D.; Bauer, L. J. J. Am. Chem.
Soc. 1985, 107, 6052–6059.
(5) (a) Sone, T.; Ohba, Y.; Moriya, K.; Kumada, H.; Ito, K. Tetrahedron
1997, 53, 10689–10698. (b) Kumagai, H.; Hasegawa, M.; Miyanari, S.;
Sugawa, Y.; Sato, Y.; Hori, T.; Ueda, S.; Kamiyama, H.; Miyano, S.
Tetrahedron Lett. 1997, 38, 3971–3972. (c) Iki, N.; Kabuto, C.; Fukushima,
T.; Kumagai, H.; Takeya, H.; Miyanari, S.; Miyashi, T.; Miyano, S.
Tetrahedron 2000, 56, 1437–1443. (d) Lhota´k, P. Eur. J. Org. Chem. 2004,
1675–1692.
(3) (a) Gutsche, C. D.; Bauer, L. J. Tetrahedron Lett. 1981, 22, 4763–
4766. (b) Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161–170. (c) A related
chair-like structure has also been reported; see: Czugler, M.; Tisza, S.; Speir,
G. J. Incl. Phenom. Recognit. Chem. 1991, 11, 323–331.
10.1021/ol8028912 CCC: $40.75
Published on Web 01/16/2009
2009 American Chemical Society