6330
J. Lee et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6327–6330
References and notes
1. Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253. and references therein.
2. (a) Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Cruz-Lopez, O.; Cara, C. L.;
Basso, G.; Viola, G.; Khedr, M.; Balzarini, J.; Mahboobi, S.; Sellmer, A.; Bramcale,
A.; Hamel, E. J. Med. Chem. 2009, 52, 5551; (b) Sirisoma, N.; Kasib, S.; Pervin, A.;
Zhang, H.; Jiang, S.; Willardsen, A.; Anderson, M.; Baichwal, V.; Mather, G. G.;
Jessing, K.; Hussain, R.; Hoang, K.; Pleiman, C. M.; Tseng, B.; Drewe, J.; Cai, S. X.
J. Med. Chem. 2008, 51, 4771; (c) Duan, J.-X.; Cai, X.; Meng, F.; Lan, L.; Hart, C.;
Matteucci, M. J. Med. Chem. 2007, 50, 1001; (d) Wang, L.; Woods, K. W.; Li, Q.;
Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697; (e) Morris,
P. G.; Fornier, M. N. Expert Rev. Anticancer Ther. 2008, 9, 175; (f) Meng, F.; Cai,
X.; Duan, J.; Matteucci, M. G.; Hart, C. P. Cancer Chemother. Pharmacol. 2008, 61,
953; (g) Wu, Y.-S.; Coumar, M. S.; Chang, J.-Y.; Sun, H.-Y.; Kuo, F.-M.; Kuo, C.-C.;
Chen, Y.-J.; Chang, C.-Y.; Hsiao, C.-L.; Liou, J.-P.; Chen, C.-P.; Yao, H.-T.; Chiang,
Y.-K.; Tan, U.-K.; Chen, C.-T.; Chu, C.-Y.; Wu, S.-Y.; Yeh, T.-K.; Lin, C.-Y.; Hsieh,
H.-P. J. Med. Chem. 2009, 52, 4941.
3. (a) Hinnen, P.; Eskens, F. Br. J. Cancer 2007, 96, 1159; (b) Kasibhatla, S.;
Gourdeau, H.; Meerovitch, K.; Drewe, J.; Reddy, S.; Qiu, L.; Zhang, H.; Bergeron,
F.; Bouffard, D.; Yang, Q.; Herich, J.; Lamothe, S.; Cai, S. X.; Tseng, B. Mol. Cancer
Ther. 2004, 3, 1365; (c) Patterson, D. M.; Rustin, G. J. S. Clin. Oncol. 2007, 19, 443;
(d) Gridelli, C.; Rossi, A.; Maione, P.; Rossi, M.; Castaldo, V.; Sacco, P. C.;
Volantuoni, G. Oncologist 2009, 14, 612.
Figure 3. Time versus plasma concentration curves of 1 and 3 after iv administra-
tion (10 mg/kg) of 3ÁHCl to fasted male Sprague-Dawley rats. LLQ = 10 ng/ml.
4. Griggs, J.; Metcalfe, J. C.; Hesketh, R. Lancet Oncol. 2001, 2, 82.
5. Kim, T. J.; Ravoori, M.; Landen, C. N.; Kamat, A. A.; Han, L. Y.; Lu, C.; Lin, Y. G.;
Merritt, W. M.; Jennings, N.; Spannuth, W. A.; Langley, R.; Gershenson, D. M.;
Coleman, R. L.; Kundra, V.; Sood, A. K. Cancer Res. 2007, 67, 9337.
6. Waterbeemd, H.; Lennaernas, H.; Artursson, P. Drug Bioavailability. In Methods
and Principles in Medicinal Chemistry; Mannhold, R., Kubinyi, H., Timmerman,
H., Eds.; Wiley-VCH: Weinheim, 2003; Vol. 18, pp 189–242.
presumably hydrolyzed to 1 by the action of various hydrolytic
enzymes present in microsomes. In contrast, about 60% remained
in the case of 1 both in human and dog liver microsomes. Because
the active component is compound 1 upon administration of
amino acid prodrugs to mouse, their hydrolysis rate in vivo seemed
to play a key role in maximizing its antitumor efficacy. In order to
assure that parent compound was liberated in vivo, PK studies
were performed, that is, plasma concentration of 1 was measured
after intravenous administration of 3ÁHCl to the rats (10 mg/kg in
saline). Figure 3 shows the time versus plasma concentration of
both 1 and 3 where compound 1 was detected right after adminis-
tration with the half-life of 1.65 h while compound 3 disappeared
rapidly from the plasma (t1/2 = 0.41 h) and fell down below the LLQ
(lower limit of quantitation) after 2 h. This result clearly indicated
that prodrug (3ÁHCl) was capable of being cleaved efficiently
in vivo as anticipated delivering active component, 1. Similar phar-
macokinetic profile was observed in dogs (data not shown).
In this communication, we described the discovery of highly
water-soluble prodrug (3ÁHCl) of potent cytotoxic compound 1
7. Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Eur. J. Cancer 2001, 37,
1590.
8. (a) Stella, V. J.; Nti-Addae, K. W. Adv. Drug Delivery Rev. 2007, 59, 677; (b)
Bradshaw, T. D.; Chua, M.-S.; Trapani, V.; Sausville, E. A.; Stevens, M. F. G. Br. J.
Cancer 2002, 86, 1348; (c) Wermuth, C. G. In The Practice of Medicinal Chemistry;
Wermuth, C. G., Ed., 3rd ed.; Academic Press: Burlington, 2008; pp 721–746.
9. Sobue, S.; Tan, K.; Layton, G.; Leclerc, V.; Weil, A. Br. J. Clin. Pharmacol. 2004, 57,
773.
10. Stella, V. J. Adv. Drug Delivery Rev. 1996, 19, 311.
11. Plunkett, W.; Huang, P.; Gandhi, V. Semin. Oncol. Nurs. 1990, 17, 3.
12. (a) Pochopin, N. L.; Charman, W. N.; Stella, V. J. Drug Metab. Dispos. 1994, 22,
770; (b) Bundgaard, H.; Larsen, C.; Thorbek, P. Int. J. Pharm. 1984, 18, 67; (c)
Vollmann, K.; Qurishi, R.; Hockemeyer, J.; Mueller, C. E. Molecules 2008, 13, 348.
13. (a) Detailed SAR studies of 1 will be reported in a separate publication. J. Med.
Chem., submitted for publication.; (b) Lee, K. J.; Kim, S. J.; Park, G. T.; Han, B. H.;
Choi, J. H.; Hwang, I.-C.; Lee, J.; Choi, H.; Kim, Y. H.; Kim, D.-H.; Lee, S.; Hong, C.
I. Abstract of Papers, 100th American Association for Cancer Research (AACR),
Denver, CO, 2009; Abstract 5561.; (c) Kim, S. J.; Kim, S.-M.; Choi, J. H.; Lee, D.
H.; Lee, D. W.; Park, G. T.; Lim, I.-T.; Jeon, D.-J.; Lee, S. W.; Kim, D.-H.; Lee, K. J.;
Lee, S.; Hong, C. I. Abstract of Papers, 101th American Association for Cancer
Research (AACR), Washington D.C., 2010; Abstract 4425.
by incorporating (
L
)-valine into the amino group of thiazole ring
- or -form) were prepared,
in 1. Various amino acid prodrugs (
L
D
14. Selected data for 3ÁHCl: 1H NMR (400 MHz, DMSO-d6) d 13.00 (s, 1H), 9.07 (s,
1H), 8.70 (d, J = 4.4 Hz, 3H), 8.30 (d, J = 1.5 Hz, 1H), 8.16 (dd, J = 8.0, 1.6 Hz, 1H),
8.11 (s, 1H), 7.97 (s, 1H), 7.70 (d, J = 8.1 Hz, 1H), 6.85 (s, 2H), 3.94 (m, 1H), 3.71
(s, 6H), 3.69 (s, 3H), 2.25 (m, 1H), 0.98 (d, J = 6.9 Hz, 6H).; 13C NMR (100 MHz,
DMSO-d6) d 192.9, 168.0, 157.8, 152.9, 152.7, 147.5, 144.8, 142.5, 137.6, 135.8,
132.8, 131.8, 131.2, 126.2, 121.8, 112.5, 106.9, 60.6, 57.8, 56.4, 30.4, 18.8, 18.3;
HRMS calcd for C26H28N6O5S (free base) 537.1915 [M+H]+, found 537.1915. For
12: 1H NMR (400 MHz, DMSO-d6): d 12.92 (br, 1H, NH), 9.03 (s, 1H), 8.42 (br m,
3H), 8.28 (s, 1H), 8.17 (dd, 1H, J = 8.1, 1.4), 8.09 and 7.98 (2s, 2H), 7.72 (d, 1H,
J = 8.1), 6.86 (s, 2H), 3.72 (s, 6H), 3.70 (s, 3H), 1.50 (d, 3H, J = 7.0). MS (ESI) m/z
509.0 (M++1).
15. HL60 cells were seeded into 96-well plates and the compound diluents were
added. After 72 h incubation at 37 °C in a humidified 5% CO2 atmosphere, cell
viability was determined by addition of MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide, final concentration of 0.25 mg/ml).
16. Ohsumi, K.; Hatanaka, T.; Nakagawa, R.; Fukuda, Y.; Morinaga, Y.; Suga, Y.;
Nihei, Y.; Ohishi, K.; Akiyama, Y.; Tsuji, T. Anti-Cancer Drug Des. 1999, 14, 539.
17. In brief, HCT116 and CX-1 cells were implanted sc in the flanks of nude mice.
After 20–25 days, tumors from several animals were excised. The viable
portion of the tumor was fragmented and implanted sc in the flanks of nude
mice. Therapy was started after tumor volumes reached to 100–200 mm3.
18. Coleman, M. D. Human Drug Metabolism; Wiley: Bermingham, 2005. Chapter 3.
and their in vitro antiproliferation activity against HL60 then
in vivo efficacy was evaluated. Distinct efficacy profiles were ob-
served in mouse xenografts bearing human tumor (CX-1 and
HCT-116) depending on the amino acids attached. Among them,
3ÁHCl with its aqueous solubility significantly improved showed
marked antitumor efficacy and it was evident from pharmacoki-
netic analysis that upon administration of 3ÁHCl intravenously, it
was rapidly cleared from plasma with appearance of parent com-
pound (1). Phase 1 clinical trial of compound 3ÁHCl (CKD-516) is
currently underway.
Acknowledgment
Financial support from Korean ministry of Health, Welfare &
Family Affairs (MIHWAF) to CCT (Center of Excellence in Cancer
Research, Grant Number A020599) was greatly appreciated.