Efficient Route to Substituted Guanidines
Organometallics, Vol. 28, No. 3, 2009 883
Table 1. Catalytic Addition of an Aniline to a
acterized by X-ray single-crystal structural analysis and con-
firmed to be a true catalyst species.
N,N′-Diisopropylcarbodiimidea
Results and Discussion
Catalytic Addition of Primary Aromatic Amines to Carbo-
diimides. As a control experiment, N,N′-diisopropylcarbodiimide
iPrNdCdNiPr was heated with aniline in C6D5Cl at 140 °C,
but no reaction was observed in 24 h (Table 1, entry 1). In
contrast, addition of a small amount (1-2 mol %) of the readily
available alkyl aluminum complex AlMe3 at room temperature
entry cat. (mol %)
solvent
C6D6Cl
C6D6
temp (°C) time/h yield (%)b
1
2
3
4
5
6
7
8
9
0
140
rt
rt
rt
rt
rt
rt
rt
rt
24
0.5
0
>99
99
>99
>99
>99
>99
>99
59
AlMe3(2)
AlMe3(1)
AlMe3(2)
AlMe3(2)
AlMe3(2)
AlEt3(2)
AlEt2Cl(2)
AlCl3(2)
C6D6
0.5
0.5
0.5
0.5
0.5
0.5
2
[D8]toluene
[D8]THF
Et2O
C6D6
C6D6
(5) (a) Katritzky, A. R.; Rogovoy, B. V. ArkiVoc 2005, (4), 49–87. (b)
Manimala, J. C.; Anslyn, E. V. Eur. J. Org. Chem. 2002, 3909–3922. (c)
Peterlin-Masˇicˇ, L.; Kikelj, D. Tetrahedron 2001, 57, 7073>7105. (d) Li,
J.; Zhang, Z.; Fan, E. Tetrahedron Lett. 2004, 45, 1267–1269. (e) Convers,
E.; Tye, H.; Whittaker, M. Tetrahedron Lett. 2004, 45, 3401–3404. (f) Gers,
T.; Kunce, D.; Markowski, P.; Izdebski, J. Synthesis 2004, 37–42. (g) Yu,
Y.; Ostresh, J. M.; Houghten, R. A. J. Org. Chem. 2002, 67, 3138–3141.
(h) Wu, Y.-Q.; Hamilton, S. K.; Wilkinson, D. E.; Hamilton, G. S. J. Org.
Chem. 2002, 67, 7553–7556. (i) Hopkins, T. P.; Dener, J. M.; Boldi, A. M.
J. Comb. Chem. 2002, 4, 167–174. (j) Tamaki, M.; Han, G.; Hruby, V. J.
J. Org. Chem. 2001, 66, 1038–1042. (k) Musiol, H.-J.; Moroder, L. Org.
Lett. 2001, 3, 3859–3861. (l) Lo´pez-Cremades, P.; Molina, P.; Aller, E.;
Lorenzo, A. Synlett 2000, 1411–1414. (m) Kent, D. R.; Cody, W. L.;
Doherty, A. M. Tetrahedron Lett. 1996, 37, 8711–8714.
(6) (a) Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133–136. (b) Powell,
D. A.; Ramsden, P. D.; Batey, R. A. J. Org. Chem. 2003, 68, 2300–2309.
(c) Ghosh, A. K.; Hol, W. G. J.; Fan, E. J. Org. Chem. 2001, 66, 2161–
2164.
(7) (a) Molina, P.; Aller, E.; Lorenzo, A. Synlett 2003, 714–716. (b)
Molina, P.; Aller, E.; Lorenzo, A. Synthesis 1998, 283–287.
(8) For examples of addition of group 3 and lanthanide amido complexes
to carbodiimides, see: (a) Pi, C.; Zhang, Z.; Pang, Z.; Zhang, J.; Luo, J.;
Chen, Z.; Weng, L.; Zhou, X. Organometallics 2007, 26, 1934–1946. (b)
Pi, C.; Liu, R.; Zheng, P.; Chen, Z.; Zhou, X. Inorg. Chem. 2007, 46, 5252–
5259. (c) Pi, C.; Zhu, Z.; Weng, L.; Chen, Z.; Zhou, X. Chem. Commun.
2007, 2190–2192. (d) Ma, L.; Zhang, J.; Cai, R.; Chen, Z.; Zhou, X. Dalton
Trans. 2007, 2718–2722. (e) Pi, C.; Zhang, Z.; Liu, R.; Weng, L.; Chen,
Z.; Zhou, X. Organometallics 2006, 25, 5165–5172. (f) Ma, L.; Zhang, J.;
Zhang, Z.; Cai, R.; Chen, Z.; Zhou, X. Organometallics 2006, 25, 4571–
4578. (g) Trifonov, A. A.; Lyubov, D. M.; Fukin, G. K.; Baranov, E. V.;
Kurskii, Y. A. Organometallics 2006, 25, 3935–3942. (h) Ma, L.; Zhang,
J.; Cai, R.; Chen, Z.; Weng, L.; Zhou, X. J. Organomet. Chem. 2005, 690,
4926–4932. (i) Zhang, J.; Zhou, X.; Cai, R.; Weng, L. Inorg. Chem. 2005,
44, 716–722. (j) Zhang, J.; Cai, R.; Weng, L.; Zhou, X. Organometallics
2004, 23, 3303–3308. (k) Luo, Y.; Yao, Y.; Shen, Q.; Yu, K.; Weng, L.
Eur. J. Inorg. Chem. 2003, 318–323. (l) Zhang, J.; Cai, R.; Weng, L.; Zhou,
X. Organometallics 2003, 22, 5385–5391. (m) Zhang, J.; Cai, R.; Weng,
L.; Zhou, X. J. Organomet. Chem. 2003, 672, 94–99. (n) Luo, Y.; Yao, Y.;
Shen, Q. Macromolecules 2002, 35, 8670–8671. (o) Zhou, Y.; Yap, G. P. A.;
Richeson, D. S. Organometallics 1998, 17, 4387–4391.
(9) For examples of addition of main group metal amido complexes to
carbodiimides, see: (a) Otero, A.; Ferna´ndez-Baeza, J.; Antinolo, A.; Tejeda,
J.; Lara-Sa´nchez, A.; Sa´nchez-Barba, L. F.; Lo´pez-Solera, I.; Rodr´ıguze,
A. M. Inorg. Chem. 2007, 46, 1760–1770. (b) Rowley, C. N.; DiLabio,
G. A.; Barry, S. T. Inorg. Chem. 2005, 44, 1983–1991. (c) Kenney, A. P.;
Yap, G. P. A.; Richeson, D. S.; Barry, S. T. Inorg. Chem. 2005, 44, 2926–
2933. (d) Giesbrecht, G. R.; Shafir, A.; Arnold, J. J. Chem. Soc., Dalton
Trans. 1999, 3601–3604. (e) Coles, M. P.; Swenson, D. C.; Jordan, R. F.
Organometallics 1998, 17, 4042–4048. (f) Barrett, A. G. M.; Crimmin,
M. R.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A. Dalton Trans. 2008,
4474–4481. (g) Mansfield, N. E.; Coles, M. P.; Hitchcock, P. B. Dalton
Trans. 2005, 2833–2841.
(10) For examples of addition of transition metal amido complexes to
carbodiimides, see: (a) Shen, H.; Chan, H.-S.; Xie, Z. Organometallics 2007,
26, 2694–2704. (b) Vicente, J.; Abad, J. A.; Lo´pez-Sa´ez, M.-J.; Jones, P. G.
Organometallics 2006, 25, 1851–1853. (c) Coles, M. P.; Hitchcock, P. B.
Eur. J. Inorg. Chem. 2004, 2662–2672. (d) Ong, T.-G.; Yap, G. P. A.;
Richeson, D. S. Chem. Commun. 2003, 2612–2613. (e) Bazinet, P.; Wood,
D.; Yap, G. P. A.; Richeson, D. S. Inorg. Chem. 2003, 42, 6225–6229. (f)
Duncan, A. P.; Mullins, S. M.; Arnold, J.; Bergman, R. G. Organometallics
2001, 20, 1808–1819. (g) Keaton, R. J.; Jayaratne, K. C.; Hemingsen, D. A.;
Koterwas, L. A.; Sita, L. R. J. Am. Chem. Soc. 2001, 123, 6197–6198. (h)
Zuckerman, R. L.; Bergman, R. G. Organometallics 2001, 20, 1792–1807.
(i) Zuckerman, R. L.; Bergman, R. G. Organometallics 2000, 19, 4795–
4808. (j) Zuckerman, R. L.; Krska, S. W.; Bergman, R. G. J. Am. Chem.
Soc. 2000, 122, 751–761. (k) Koterwas, L. A.; Fettinger, J. C.; Sita, L. R.
Organometallics 1999, 18 (10), 4183–4190. (l) Sita, L. R.; Babcock, J. R.
Organometallics 1998, 17, 5228–5230.
C6D6
a Conditions: aniline, 0.51 mmol; N,N′-diisopropylcarbodiimide, 0.50
b
1
mmol. Yields were determined by H NMR.
led to rapid addition of aniline to PrNdCdNiPr to give the
i
N,N′,N′′-trisubstituted guanidine 1 in high yields (Table 1, entries
2-6). The polarity of solvents did not show a significant
influence on the catalytic activity in the present reaction (Table
1, entries 3-6). Other alkyl complexes such as AlEt3 and
AlEt2Cl were also effective for this catalytic reaction, suggesting
that the activity of the present catalyst system is not significantly
affected by the initial alkyl group (Table 2, entries 7 and 8).
Compared with alkyl aluminum catalyst precursors, AlCl3
showed lower catalytic activity (Table 1, entries 2-9).
AlMe3 was then chosen as a catalyst for the addition reaction
between various primary amines and carbodiimides having
various substituents. Representative results are summarized in
Table 2. In the presence of 2 mol % of AlMe3, the reaction of
aniline with carbodiimides having N-aryl-N′-alkyl and N,N′-
dialkyl substituents was completed at room temperature to yield
the corresponding substituted guanidines 1-5 quantitatively
(Table 2, entries 1-5). In the case of the bulkier N,N′-di-tert-
butylcarbodiimide tBuNdCdNtBu, the reaction became a little
bit slower probably owing to its steric hindrance (Table 2, entry
4). A wide range of substituted anilines could be used for this
reaction. The reaction was not influenced by either electron-
(11) (a) Saito, S. Main Group Metals in Organic Synthesis; Wiley-VCH:
Weinheim, 2004; Vol. 1, pp 189-306. (b) Maruoka, K. Synthetic Utility
of Bulky Aluminum Reagents as Lewis Acid Receptors. In Lewis Acid
Reagents; Yamamoto, H., Ed.; Oxford University Press: Oxford, 1999; pp
5-29. (c) Negishi, E.-I.; Liu, F. Palladium-or Nickel-catalyzed Cross-
coupling with Organometals Containing Zinc, Magnesium, Aluminum, and
Zirconium. In Metal-catalyzed Cross-coupling Reactions; Diederich, F.,
Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; pp 1-47.
(12) (a) Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Cui, Q.; Stahl,
S. S. J. Am. Chem. Soc. 2008, 130, 647–654. (b) Hoerter, J. M.; Otte, K. M.;
Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 5177–5183. (c)
Dornan, P.; Rowley, C. N.; Priem, J.; Barry, S. T.; Burchell, T. J.; Woo,
T. K.; Richeson, D. S. Chem. Commun. 2008, 3645–3647. Catalytic
transformation of a group 13 guanidinate species was recently mentioned.
See: (d) Rowley, C. N.; Ong, T.-G.; Priem, J.; Woo, T. K.; Richeson, D. S.
Inorg. Chem. 2008, 47, 9660–9668.
(13) For reviews of the chemistry of the guanidines and guanidinates,
see: (a) Coles, M. P. Dalton Trans. 2006, 985–1001. (b) Bailey, P. J.; Pace,
S. Coord. Chem. ReV. 2001, 214, 91–141. (c) Raczyn´ska, E. D.; Cyran´ski,
M. K.; Gutowski, M.; Rak, J.; Gal, J.-F.; Maria, P.-C.; Darowska, M.;
Duczmal, K. J. Phys. Org. Chem. 2003, 16, 91–106.
(14) For examples of group 13 guanidinate complexes, see: (a) Brazeau,
A. L.; DiLabio, G. A.; Kreisel, K. A.; Monillas, W.; Yap, G. P. A.; Barry,
S. T. Dalton Trans. 2007, 3297–3304. (b) Rowley, C. N.; DiLabio, G. A.;
Barry, S. T. Inorg. Chem. 2005, 44, 1983–1991. (c) Kenney, A. P.; Yap,
G. P. A.; Richeson, D. S.; Barry, S. T. Inorg. Chem. 2005, 44, 2926–2933.
(d) Aeilts, S. L.; Coles, M. P.; Swenson, D. C.; Jordan, R. F. Organome-
tallics 1998, 17, 3265–3270. (e) Chang, C.-C.; Hsiung, C.-S.; Su, H.-L.;
Srinivas, B.; Chiang, M. Y.; Lee, G.-H.; Wang, Y. Organometallics 1998,
17, 1595–1601.