SCHEME 1. Direct Oxidative Couplinga
Copper-Catalyzed Oxidative Coupling of Benzylic
C-H Bonds with 1,3-Dicarbonyl Compounds
Nadine Borduas and David A. Powell*
Merck Frosst Centre for Therapeutic Research, 16711 Trans
Canada Highway, Kirkland, Que´bec H9H 3L1, Canada
a Issues: C-H bond selectivity, further oxidation of products.
lished for the oxidative coupling of sp3 C-H bonds require
carbene precursors,4 directing groups,5 and stoichiometric metal
reagents6 or remain limited to R-heteroatomic hydrocarbons.7-9
We were intrigued by the possibility of directly functional-
izing a benzylic C-H bond with concomitant formation of a
new C-C bond (Scheme 1). Realization of such a methodology
would require overcoming the various issues of C-H bond
selectivity and minimizing further functionalization of the
coupling product 1 via competing oxidation (e.g., 2). Our
experience in the copper-catalyzed amidation of allylic and
benzylic C-H bonds established an initial starting point in
where to begin our investigations.10 Recently, Li has reported
a conceptually similar, iron-catalyzed, selective C-C bond
formation by oxidative activation of benzylic C-H bonds.11
Herein we describe our own efforts and proof of principle that
a copper catalyst can effect the selective oxidative functional-
ReceiVed June 19, 2008
A copper-catalyzed oxidative coupling of benzylic C-H
bonds with 1,3-dicarbonyl compounds is described. The
reaction utilizes an inexpensive copper catalyst-oxidant
system that is suitable for the coupling of a range of benzylic
C-H bonds with various 1,3-dicarbonyl compounds. Kinetic
isotope studies support a mechanism involving a benzylic
hydrogen abstraction.
(4) (a) Davies, H. M. L. Angew. Chem., Int. Ed. 2006, 45, 6422–6425. (b)
Davies, H. M. L.; Beckwith, R. E. J. Chem. ReV. 2003, 103, 2861–2903. (c)
Davies, H. M. L.; Loe, Ø. Synthesis 2004, 2595–2608. (d) Mu¨ller, P.; Tohill, S.
Tetrahedron 2000, 56, 1725–1731.
(5) (a) Mousseau, J. J.; Larive´e, A.; Charette, A. B. Org. Lett. 2008, 10,
1641–1643. (b) Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc.
2008, 130, 3266–3267. (c) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.;
Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510–
3511. (d) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128,
12634–12635. (e) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem.
Soc. 2005, 127, 13154–13155. (f) Kalyani, D.; Deprez, N. R.; Desai, L. V.;
Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330–7331. (g) Shabashov, D.;
Daugulis, O. Org. Lett. 2005, 7, 3657–3659. (h) Desai, L. V.; Hull, K. L.; Sanford,
M. S. J. Am. Chem. Soc. 2004, 126, 9542–9543. (i) Jun, C.-H.; Hwang, D.-C.;
Na, S.-J. Chem. Commun. 1998, 1405–1406.
(6) (a) Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.;
Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857–12869.
(b) Baran, P. S.; DeMartino, M. P. Angew. Chem., Int. Ed. 2006, 45, 7083–
7086. (c) Nishino, H.; Kamachi, H.; Baba, H.; Kurosawa, K. J. Org. Chem.
1992, 57, 3551–3557. (d) Trost, B. M.; Dietsche, T. J. J. Am. Chem. Soc. 1973,
95, 8200–8201.
(7) (a) Basle´, O.; Li, C.-J. Green Chem. 2007, 9, 1047–1050. (b) Li, C.-J.;
Li, Z. Pure Appl. Chem. 2006, 78, 935–945. (c) Zhang, Y.; Li, C.-J. J. Am.
Chem. Soc. 2006, 128, 4242–4243. (d) Zhang, Y.; Li, C.-J. Angew. Chem., Int.
Ed. 2006, 45, 1949–1952. (e) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127,
6968–6969. (f) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672–3673. (g)
Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 3173–3176. (h) Li, Z.; Li, C.-J. J. Am.
Chem. Soc. 2004, 126, 11810–11811.
(8) (a) Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006,
128, 14220–14221. (b) DeBoef, B.; Pastine, S. J.; Sames, D. J. Am. Chem. Soc.
2004, 126, 6556–6557. (c) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.;
Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 10935–10941. (d) Dyker,
G. J. Org. Chem. 1993, 58, 6426–6428.
(9) For examples of intramolecular transition metal-catalyzed couplings of
sp3 C-H bonds, see: (a) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett.
2008, 10, 1759–1762. (b) Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem.
Soc. 2007, 129, 14570–14571. (c) Hitce, J.; Retailleau, P.; Baudoin, O. Chem.
Eur. J. 2007, 13, 792–799. (d) Ren, H.; Knochel, P. Angew. Chem., Int. Ed.
2006, 45, 3462–3465. (e) Dong, C.-G.; Hu, Q.-S. Angew. Chem., Int. Ed. 2006,
45, 2289–2292. (f) Baudoin, O.; Herrbach, A.; Gue´ritte, F. Angew. Chem., Int.
Ed. 2003, 42, 5736–5740.
(10) (a) Pelletier, G.; Powell, D. A. Org. Lett. 2006, 8, 6031–6034. (b) Powell,
D. A.; Pelletier, G. A. Tetrahedron Lett. 2008, 49, 2495–2498.
(11) (a) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505–
6507. (b) Zhang, Y.; Li, C.-J. Eur. J. Org. Chem. 2007, 465, 4–4657.
The direct functionalization of carbon-hydrogen bonds to
carbon-carbon bonds remains an arduous challenge com-
pounded by issues of selectivity, functional group compatibility,
and susceptibility toward overoxidation.1 Achieving selectivity
among a range of C-H bonds, including sp3 and sp2 hybridized
C-H bonds, is of particular significance. While new metal
catalyst systems have been developed for the direct coupling
of aromatic and heteroaromatic C-H bonds,2 fewer advances
has been made within the realm of sp3 C-H bond functional-
ization. Despite notable progress,3 most methodologies estab-
(1) For some recent reviews, see: (a) Godula, K.; Sames, D. Science 2006,
312, 67–72. (b) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439–2463.
(c) Daugulis, O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva, A.
Synlett 2006, 3382–3388. (d) Handbook of C-H Transformations; Dyker, G.,
Ed; Wiley-VCH: Weinheim, 2005. (e) Espino, C. G.; Du Bois, J. In Modern
Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed; Wiley-VCH: Wein-
heim, 2005; pp 379-416. (f) Ma, S.; Gu, Z. Angew. Chem., Int. Ed. 2005, 44,
7512–7517. (g) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077–
1101. (h) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731–1769.
(2) For some representative examples and reviews, see: (a) Ge, H.; Niphakis,
M. J.; Georg, G. I. J. Am. Chem. Soc. 2008, 130, 3708–3709. (b) Lewis, J. C.;
Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130,
2493–2500. (c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107,
174–238. (d) Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta 2007,
40, 35–52. (e) Seregin, I. V.; Gevorgyan, V. J. Chem. Soc., Chem. ReV. 2007,
36, 1173–1193. (f) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253–
1264.
(3) For some recent examples, see: (a) Kim, H.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2008, 130, 398–399. (b) Dong, C.-G.; Hu, Q.-S. Angew. Chem., Int.
Ed. 2006, 45, 2289–2292. (c) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128,
56–57. (d) Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A.; Zhao, Y.-
M.; Xia, W.-J. J. Am. Chem. Soc. 2005, 127, 10836–10837. (e) Barder, T. E.;
Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127,
4685–4696. (f) Lawrence, J. D.; Takahashi, M.; Bae, C.; Hartwig, J. F. J. Am.
Chem. Soc. 2004, 126, 15334–15335.
7822 J. Org. Chem. 2008, 73, 7822–7825
10.1021/jo801322p CCC: $40.75 2008 American Chemical Society
Published on Web 09/04/2008