D. A. Singleton et al. / Tetrahedron 57 -2001) 5149±5160
5159
Brown, F. K. J. Am. Chem. Soc. 1986, 108, 554. 3d). Houk,
K. N.; Loncharich, R. J.; Blake, J. F.; Jorgensen, W. L. J. Am.
Chem. Soc. 1989, 111, 9172. 3e). Houk, K. N.; Gonzalez, J.;
Li, Y. Acc. Chem. Res. 1995, 28, 81. 3f). Li, Y.; Houk, K. N. J.
Am. Chem. Soc. 1993, 115, 7478. 3g). Goldstein, E.; Beno, B.;
Houk, K. N. J. Am. Chem. Soc. 1996, 118, 6036.
4. Sakai, S. J. Phys. Chem. A 2000, 104, 922.
mono- and doubly-activated transition states one cannot
strictly expect the second substituent to have the same
activating effect as the ®rst. Only in extreme cases is the
interpretation clear.
24. Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117,
9357.
25. 3a) Bigeleisen, J.; Mayer, M. G. J. Chem. Phys. 1947, 15, 261.
3b) Wolfsberg, M. Acc. Chem. Res. 1972, 5, 225.
5. Hancock, R. A.; Wood, Jr., B. F. J. Chem. Soc., Chem.
Commun. 1988, 351.
26. The calculations used the program quiver 3Saunders, M.;
Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1989, 111,
8989) with Becke3LYPfrequencies scaled by 0.9614 3Scott,
A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502).
27. Bell, R. P. In The TunnelEffect in Chemistry ; Chapman and
Hall: London, 1980; pp. 60±63.
6. Gajewski, J. J.; Peterson, K. B.; Kagel, J. R.; Huang, Y. C. J.
J. Am. Chem. Soc. 1989, 111, 9078.
7. Horn, B. A.; Herek, J. L.; Zewail, A. H. J. Am. Chem. Soc.
1996, 118, 8755.
8. For a countering view, see: Hrovat, D. A.; Fang, S.; Borden,
W. T.; Carpenter, B. K. J. Am. Chem. Soc. 1997, 119, 5253.
9. Beno, B. R.; Wilsey, S.; Houk, K. N. J. Am. Chem. Soc. 1999,
121, 4816±4826.
28. Gillis, B. T.; Hagarty, J. D. J. Org. Chem. 1967, 32, 330.
29. exo Transition structures were predicted by Houk and Foote to
be much higher in energy 3see Ref. 12) and were not
considered here.
10. Wilsey, S.; Houk, K. N.; Zewail, A. H. J. Am. Chem. Soc.
1999, 121, 5772.
30. Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 633.
31. Sauer, J.; Sustmann, R. Angew. Chem., Int. Ed. Engl. 1980, 19,
779.
11. McCarrick, M. A.; Wu, Y.; Houk, K. N. J. Am. Chem. Soc.
1993, 58, 3330.
12. Chen, J. S.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1998,
120, 12303.
32. Early in the reaction the temperature was limited by the
boiling point of the reaction mixture. As isoprene reacted,
the boiling point rose and was limited at 1008C for the later
stages of the reaction. Because later stages of the reaction
weigh most heavily in the isotopic fractionation process
3see Ref. 24 and refs therein), the observed KIEs are best
considered as measured at <1008C.
33. This reaction with maleic anhydride was not expected to be
reversible 3see: Tobia, D.; Harrison, R.; Phillips, B.; White, T.
L.; DiMare, M.; Rickborn, B. J. Org. Chem. 1993, 58, 6701)
but based on the ineffectiveness of the trapping this
assumption may not have been correct.
13. Froese, R. D. J.; Coxon, J. M.; West, S. C.; Morokuma, K.
J. Org. Chem. 1997, 62, 6991.
14. 3a) Singleton, D. A.; Merrigan, S. R.; Liu, J.; Houk, K. N.
J. Am. Chem. Soc. 1997, 119, 3385±3386. 3b) DelMonte,
A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton,
D. A.; Straûner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997,
119, 9907±9908. 3c) Keating, A. E.; Merrigan, S. R.;
Singleton, D. A.; Houk, K. N. J. Am. Chem. Soc. 1999, 121,
3933. 3d) Meyer, M. P.; DelMonte, A. J.; Singleton, D. A.
J. Am. Chem. Soc. 1999, 121, 10865. 3e) Singleton, D. A.;
Hang, C. J. Am. Chem. Soc. 1999, 121, 11885. 3f) Singleton,
D. A.; Hang, C. J. Org. Chem. 2000, 65, 895.
34. In principle this could be allowed for by adjusting the %
conversion used to calculated isotope effects; for example,
using a nominal % conversion of 61% for the second reaction
above brings all of the isotope effects found for that reaction
within experimental error of those predicted for the concerted
reaction. However, such an adjustment is arbitrary and
unnecessary for the purpose of comparing the calculated
KIEs for the differing pathways with experiment.
15. Beno, B. R.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc.
1996, 118, 9984±9985.
16. Singleton, D. A.; Leung, S.-W. J. Org. Chem. 1992, 57, 4796.
17. Leung, S.-W.; Singleton, D. A. J. Org. Chem. 1997, 62, 1955±
1960.
18. Ketone, ester, and nitrile substituents activate ethylene by a
factor of <105, while a second such substituent accelerates
reactions by <10±102. See Refs. 1c and 5.
35. Singleton, D. A.; Merrigan, S. R.; Thomas, A. A. Tetrahedron
Lett. 1999, 40, 639±642.
19. The steric effect of the BBN group does not appear to be
signi®cantly deactivating, as the bis3dimethylboryl)acetylene
was found to be much less reactive than 1.
36. Grisdale, P. J.; Regan, T. H.; Doty, J. C.; Figueras, J.;
Williams, J. L. R. J. Org. Chem. 1968, 33, 1116.
37. Singleton, D. A.; Martinez, J. P. Tetrahedron Lett. 1991, 32,
7365.
20. MP2/6-31Gp
calculations
identically
predict
an
unsymmetrical transition structure similar to 3, favored over
the symmetrical 4 by 2.6 kcal/mol. In the MP2 calculation the
barrier for reaction of bis3boryl)acetylene is 2.2 kcal/mol
higher than for reaction of HCCBH2.
38. Ono, N.; Kamimura, A.; Kaji, A. J. Org. Chem. 1988, 53, 251.
39. Adams, C. E.; Aguilar, D.; Hertel, S.; Knight, W. H.; Paterson,
J. Synth. Commun. 1988, 18, 2225.
40. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.;
Montgomery, J. A.; Stratmann, Jr., R. E.; Burant, J. C.;
Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.;
Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.;
Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,
S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;
Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B.
B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
21. Singleton, D. A. J. Am. Chem. Soc. 1992, 114, 6563.
22. Based on RHF/3-21G outer coef®cients of 0.39 for B versus
0.18 for C. In the ground-state conformation for bis3boryl)-
acetylene the BH2 groups are twisted by 908 from each other.
23. There is a general problem in many kinds of studies that have
interpreted the symmetry of transition states from the rates of
reaction of mono- and doubly-activated compounds. The
problem is that a mono-activated reaction 3e.g. the Diels±
Alder reaction of butadiene with methyl propiolate)
necessarily involves an unsymmetrical transition state. Thus,
whether or not the transition state for a doubly-activated
reaction is symmetrical, from the differing geometry of the