C O M M U N I C A T I O N S
Scheme 4. Access to an Adamantane Framework
Table 1. Alkylative Dearomatization-Annulation
Table 1) and establish a possible route to adamantane-containing
polyprenylated phloroglucinols including hyperibone K (4, Figure
1).
In summary, we have developed a concise approach to the
bicyclo[3.3.1]nonane framework of the polyprenylated phloroglu-
cinol natural products utilizing alkylative dearomatization-annu-
lation. A related approach has been used to access an adamantane
structure with four all carbon quaternary centers formed in one step
from a phloroglucinol precursor. Further applications of the
methodology to the synthesis of additional polyprenylated phloro-
glucinol natural products are currently in progress and will be
reported in due course.
Acknowledgment. We thank the National Institutes of Health
(Grant GM-62842), the Novartis Institutes for BioMedical Research,
and Merck Research Laboratories for research support and Mr. Ang
Li (The Scripps Research Institute) and Drs. Jianglong Zhu and
Shun Su (Boston University) for helpful discussions.
a Yield after enol methylation using TMSCHN2 (2 equiv) and iPr2EtN
(1.5 equiv). b Mixture of enol ether isomers produced, one shown for clarity.
Scheme 3. Synthesis of (()-Clusianone
Supporting Information Available: Experimental procedures and
characterization data for all new compounds; X-ray crystal structure
coordinates and files in CIF format. This material is available free of
References
(1) Presented in part at the 233rd American Chemical Society National
meeting, Chicago, Illinois, March 25-29, 2007; ORGN abstract 383.
(2) Ciochina, C.; Grossman, R. B. Chem. ReV. 2006, 106, 3963.
(3) Mccandlish, L. E.; Hanson, J. C.; Stout, G. H. Acta Cryst. 1976, B32, 1793.
(4) Cuesta-Rubio, O.; Velez-Castro, H.; Frontana-Uribe, B. A.; Cardenas, J.
Phytochemistry 2001, 57, 279.
(5) Tanaka, N.; Takaishi, Y.; Shikishima, Y.; Nakanishi, Y.; Bastow, K.; Lee,
K. H.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O. K.; Ashurmetov,
O. J. Nat. Prod. 2004, 67, 1870.
(6) Select examples: (a) Spessard, S. J.; Stoltz, B. M. Org. Lett. 2002, 4,
1943. (b) Ciochina, R.; Grossman, R. B. Org. Lett. 2003, 5, 4619. (c)
Nicolaou, K. C.; Carenzi, G. E. A.; Jeso, V. Angew. Chem., Int. Ed. 2005,
44, 3895. (d) Mehta, G.; Bera, M. K. Tetrahedron Lett. 2006, 47, 689.
(7) (a) Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M.
J. Am. Chem. Soc. 2005, 127, 14200. (b) Siegel, D. R.; Danishefsky, S.
J. J. Am. Chem. Soc. 2006, 128, 1048.
(8) (a) Rodeschini, V.; Simpkins, N. S.; Wilson, C. J. Org. Chem. 2007, 72,
4265. (b) Nuhant, P.; David, M.; Pouplin, T.; Delpech, B.; Marazano, C.
Org. Lett. 2007, 9, 287. (c) Ahmad, N. M.; Rodeschini, V.; Simpkins, N.
S.; Ward, S. E.; Blake, A. J. J. Org. Chem. 2007, 72, 4803.
(2.1 equiv) and 27 (1.1 equiv) in THF (65 °C) led to the generation
of desired annulation product. To facilitate isolation and further
characterization, enol methylation afforded 28 as a mixture of
regioisomers (54% yield, two steps, one methyl ether isomer shown
for clarity). The addition of vinyl magnesium bromide to aldehyde
28, followed by acetylation of the emerged secondary alcohol,
afforded allylic acetate 29. Palladium-catalyzed formate reduction17
of allylic acetate 29 was followed by olefin cross-metathesis with
2-methyl-2-butene according to the Grubbs’s protocol18 to afford
clusianone methyl ether 30 (80%, two steps). Final nucleophilic
demethylation8a,c generated (()-clusianone as a mixture of enol
tautomers.16b
(9) Delle Monache, F.; Monache, G. D.; Gacs-Baitz, E. Phytochemistry 1991,
30, 2003.
As previously described, we have found that the dearomatiza-
tion-annulation process favors production of clusianone-type
stereoisomers. We thus initiated experiments to probe details of
the suspected epimerization of the aldehyde-bearing stereocenter
leading to 28 (Scheme 3). Interestingly, treatment of 5 with enal
27 in the presence of KHMDS at 0 °C unexpectedly led to the
production of the complex adamantane 31 (Scheme 4). The structure
of 31 is closely related to the natural product hyperibone K (Figure
1, 4). This compound is apparently produced from the kinetic
protonation product 32 followed by a stereoselective intramolecular
aldol reaction. Further treatment of 31 with KHMDS at 65 °C led
to the formation of 33 via a retro-aldol epimerization process. These
initial studies support base-catalyzed epimerization leading to
clusianone precursor 28 (Scheme 3) and related compound (cf.
(10) See Supporting Information for complete experimental details.
(11) Drewett, K. G.; Laws, D. R. J. J. Inst. Brew. 1970, 76, 188.
(12) (a) Takagi, R.; Nerio, T.; Miwa, Y.; Matsumura, S.; Ohkata, K.
Tetrahedron Lett. 2004, 45, 7401. (b) Takagi, R.; Miwa, Y.; Matsumura,
S.; Ohkata, K. J. Org. Chem. 2005, 70, 8587. (c) Takagi, R.; Miwa, Y.;
Nerio, T.; Inoue, Y.; Matsumura, S. Org. Biomol. Chem. 2007, 5, 286.
(13) Sun, Y.; Li, Y.; Zhao, L.; Xiao, L. Hecheng Huaxue 1995, 3, 127.
(14) Mondal, M.; Puranik, V. G.; Argade, N. P. J. Org. Chem. 2007, 72, 2068.
(15) Ma, S.; Yu, S.; Peng, Z.; Guo, H. J. Org. Chem. 2006, 71, 9865.
(16) (a) dos Santos, M. H.; Nage, T. J.; Braz-Filho, R.; Lula, I. S.; Speziali,
N. L. Magn. Reson. Chem. 2001, 39, 155. (b) Piccinelli, A. L.; Cuesta-
Rubio, O.; Chica, M. B.; Mahmood, N.; Pagano, B.; Avone, M.; Barone,
V.; Rastrell, L. Tetrahedron 2005, 61, 8206.
(17) Hughes, G.; Lautens, M.; Wen, C. Org. Lett. 2000, 2, 107.
(18) Chatterjee, A. K.; Sanders, D. P.; Grubbs, R. H. Org. Lett. 2002, 4, 1939.
JA0762339
9
J. AM. CHEM. SOC. VOL. 129, NO. 42, 2007 12683