To date, two total syntheses of PLM B7,8 and LSN B9,10
as well as one formal synthesis of the latter compound have
been reported.11 Evans aldol reactions7,9 or Brown-type
pentenylation8,11 have essentially been used to control the
configuration of the C4 and C5 stereocenters. Alternatively,
a Sharpless asymmetric epoxidation followed by ring-
opening of the resulting epoxide with an alkynylalane has
also been described.10 The 1,2-diol at C8-C9 has often been
installed by a Sharpless asymmetric dihydroxylation,8,10,11
and an interesting enzymatic desymmetrization of a meso-
1,3-diol has also been used to control the absolute configu-
ration of C8.9 Interestingly, in one total synthesis of PLM
B, the chelation-controlled addition of vinylmagnesium
bromide to a ketone at C8 was described. However, several
steps were subsequently required to create the C4 and C5
stereocenters and elaborate the disubstituted unsaturated
lactone from the introduced vinyl group.7a,12
configuration of the C8 stereocenter.13 Additionally, the use
of new key steps was considered to create the C4, C5, and
C9 stereocenters in this family of natural products. A [2,3]-
Wittig rearrangement of the allylic and propargylic ether of
type D, operating with chirality tranfer, would be used to
control the configuration of C4 and C5.14 Although any R
substituent could in principle be used, an allyloxymethyl
group was selected in order to act as a relay during the
RCM.15 Ketone C would be prepared from the propargylic
alcohol E by regioselective copper-catalyzed cyclo-func-
tionalization using tosyl isocyanate. Thus, the configurations
of C4, C5, and C9 would all be controlled, either in an
indirect or a direct manner, respectively, by catalytic enan-
tioselective reductions of acetylenic ketones (Scheme 1).
Scheme 1. Retrosynthetic Analysis of the C1-C11 Subunit
Herein, we report a new convergent approach toward the
C1-C11 subunit of PLMs and a formal synthesis of PLM
B, relying on the formation of the C7-C8 bond.
In our retrosynthetic analysis, the C1-C11 fragment of
the PLMs A was disconnected at the C7-C8 bond and the
construction of the unsaturated lactone was envisaged by
ring-closing metathesis (RCM). The goal was to achieve the
chelation-controlled addition of an alkenyl or an alkynyl
Grignard reagent of type B, precursor of the C1-C7 segment
and already containing the C4 and C5 stereocenters, to a
suitably protected R-alkoxy ketone C in order to control the
(2) (a) Ozasa, T.; Suzuki, K.; Sasamata, M.; Tanaka, K.; Kobori, M.;
Kadota, S.; Nagai, K.; Saito, T.; Watanabe, S.; Iwanami, M. J. Antibiot.
Chem. 1989, 42, 1331–1338. (b) Ozasa, T.; Tanaka, K.; Sasamata, M.;
Kaniwa, H.; Shimizu, M.; Matsumoto, H.; Iwanami, M. J. Antibiot. Chem.
1989, 42, 1339–1343
.
(3) (a) Kohama, T.; Enokita, R.; Okazaki, T.; Miyaoka, H.; Torikata,
A.; Inukai, M.; Kaneko, I.; Kagasaki, T.; Sakaida, Y.; Satoh, A.; Shiraishi,
A. J. Antibiot. Chem. 1993, 46, 1503–1511. (b) Kohama, T.; Nakamura,
T.; Kinoshita, T.; Kaneko, I.; Shiraishi, A. J. Antibiot. Chem. 1993, 46,
1512–1519. (c) Shibata, T.; Kurihara, S.; Yoda, K.; Haruyama, H.
The synthesis of the C3-C7 subunit was carried out from
the readily available R-allyloxyacetic acid 1,16 which was
converted to a Weinreb amide,17 and subsequent addition
of but-1-ynyllithium led to the acetylenic ketone 2 (71%,
two steps from 1). The chirality was introduced through an
enantioselective reduction of ketone 2, catalyzed by ruthe-
nium complex (S,S)-Ru-I (5 mol %) in i-PrOH,18 to provide
the optically active propargylic alcohol 3 (97%, ee ) 91%).19
Stereoselective reduction of the alkyne using a zinc-copper
couple (THF/i-PrOH, reflux)20 generated the corresponding
(Z)-allylic alcohol which was alkylated with (triisopropyl-
Tetrahedron 1995, 51, 11999–12012
(4) Shibata, T.; Kurihara, S.; Oikawa, T.; Ohkawa, N.; Shimazaki, N.;
Sasagawa, K.; Kobayashi, T.; Kohama, T.; Asai, F.; Shiraishi, A.; Sugimura,
.
Y. J. Antibiot. Chem. 1995, 48, 1518–1520
.
(5) (a) Usui, T.; Marriott, G.; Inagaki, M.; Swarup, G.; Osada, H.
J. Biochem. 1999, 125, 960–965. (b) Kawada, M.; Kawatsu, M.; Masuda,
T.; Ohba, S.; Amemiya, M.; Kohama, T.; Ishizuka, M.; Takeuchi, T. Int.
Immunopharmcol. 2003, 3, 179–188
.
(6) Lawhorn, B. G.; Boga, S. B.; Wolkenberg, S. E.; Colby, D. A.; Gauss,
C.-M.; Swingle, M. R.; Amable, L.; Honkanen, R. E.; Boger, D. L. J. Am.
Chem. Soc. 2006, 128, 16720–16732, and references therein.
.
(7) (a) Wang, Y.-G.; Takeyama, R.; Kobayashi, Y. Angew. Chem., Int.
Ed. 2006, 45, 3320–3323. (b) Nonaka, H.; Maeda, N.; Kobayashi, Y.
(13) Still, W. C.; McDonald, J. H., III. Tetrahedron Lett. 1980, 21, 1031–
1034.
Tetrahedron Lett. 2007, 48, 5601–5604
(8) Shibahara, S.; Fujino, M.; Tashiro, Y.; Takahashi, K.; Ishihara, J.;
Hatakeyama, S. Org. Lett. 2008, 10, 2139–2142
(9) Shimada, K.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 2003,
125, 4048–4049
.
(14) (a) Nakai, T.; Mikami, K. Chem. ReV. 1986, 86, 885–902.
(b) Marshall, J. A. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: London, 1991; Vol. 3, pp 975-908.
(15) (a) Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao,
H. J. Am. Chem. Soc. 2004, 126, 10210–10211. (b) Wallace, D. J. Angew.
Chem., Int. Ed. 2005, 44, 1912–1915.
.
.
(10) (a) Miyashita, K.; Tsunemi, T.; Hosokawa, T.; Ikejiri, M.; Imanishi,
T. Tetrahedron Lett. 2007, 48, 3829–3833. (b) Miyashita, K.; Tsunemi, T.;
Hosokawa, T.; Ikejiri, M.; Imanishi, T. J. Org. Chem. 2008, 73, 5360–
(16) Taillier, C.; Hameury, T.; Bellosta, V.; Cossy, J. Tetrahedron 2007,
63, 4472–4490.
5370
(11) Mo¨ıse, J.; Sonawane, R. P.; Corsi, C.; Wendeborn, S. V.;
Arseniyadis, S.; Cossy, J. Synlett 2008, 2617–2620
.
(17) (a) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815–
3818. (b) Angelastro, M. R.; Peet, N. P.; Bey, P. J. Org. Chem. 1989, 54,
3913–3916.
.
(12) The chelation-controlled addition of an alkenyl Grignard reagent
to a methyl ketone has been used in several convergent syntheses of the
structurally related natural product fostriecin, see: (a) Chavez, D. E.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2001, 40, 3667–3670. (b) Wang,
Y.-G.; Kobayashi, Y. Org. Lett. 2002, 4, 4615–4618. (c) Trost, B. M.;
Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.; Shin, S.; Shireman,
(18) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem.
Soc. 1997, 119, 8738–8739.
(19) The ee was determined by super-critical fluid chromatography
analysis (chiral phase), see the Supporting Information.
(20) Aerssens, M. H. P. J.; Brandsma, L. J. Chem. Soc., Chem. Commun.
1984, 735–736.
B. T. J. Am. Chem. Soc. 2005, 127, 3666–3667
.
936
Org. Lett., Vol. 11, No. 4, 2009