Paper
Journal of Materials Chemistry C
2 W. H. Chen, W. T. Chuang, U. S. Jeng, H. S. Sheu and
H. C. Lin, J. Am. Chem. Soc., 2011, 133, 15674.
3 D. Y. Kim, S. A. Lee, Y. J. Choi, S. H. Wang, S. W. Kuo,
C. Nah, M. H. Lee and K. U. Jeong, Chem. – Eur. J., 2014,
20, 5689.
4 (a) Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu and
W. Y. Li, Appl. Phys. Lett., 2010, 96, 113505; (b) Y. H. Lin,
H. S. Chen, T. H. Chiang, C. H. Wu and H. K. Hsu, Opt.
Express, 2011, 19, 2556.
5 C. L. Rao, Z. Ge, S. Gauza, K. M. Chen and S. T. Wu, Mol.
Cryst. Liq. Cryst., 2010, 527, 30.
6 Z. Ge, S. Gauza, M. Jiao, H. Xianyu and S. T. Wu, Appl. Phys.
Lett., 2009, 94, 101104.
BPIII is demonstrated in Fig. S5 of the ESI.† Compared with the
highly ordered structures of BPI (body-center cubic structure)
and BPII (simple cubic structure), the structure of BPIII is
predicted to be more symmetric as the isotropic state and to
become amorphous with the short-range order of double
twisted structure alone. As shown in the AFM image of
Fig. 4(e) and Fig. S5 (ESI†), the surface of BPIII exhibited an
irregular array and the cylindrical shaped objects were arranged
in oblique and fractured filaments with random orientations.
They have also been found to exhibit similar morphological
images of spaghetti-like tangles and liquid-like arrangements in
BPIII.27 Upon further cooling, Fig. 4(f) with the disappearance of
BPIII only demonstrates a liquid-like surface in N* due to lack of
the double twisted cylindrical structure.
7 (a) H. S. Kitzerow and P. P. Crooker, Phys. Rev. Lett., 1991,
67, 2151; (b) R. M. Hornreich, Phys. Rev. Lett., 1991, 67, 2155;
(c) H. Kikuchi, Struct. Bonding, 2008, 128, 99.
8 (a) O. Henrich, K. Stratford, M. E. Cates and D. Marenduzzo,
Phys. Rev. Lett., 2011, 106, 107801; (b) A. Yoshizawa, RSC
Adv., 2013, 3, 25475.
9 (a) H. S. Kitzerow, ChemPhysChem, 2006, 7, 63;
(b) P. P. Crooker, in Chirality in Liquid Crystals, ed.
H. S. Kitzerow and C. Bahr, Springer, New York, 2001, ch.
7, p. 186.
10 W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan,
J. Guo, H. Cao and H. Yang, Adv. Mater., 2009, 21, 2050.
11 X. Chen, L. Wang, C. Li, J. Xiao, H. Ding, X. Liu, X. Zhang,
W. He and H. Yang, Chem. Commun., 2013, 49, 10097.
12 A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi and
J. Yamamoto, J. Mater. Chem., 2009, 19, 5759.
13 A. Yoshizawa, M. Sato and J. Rokunohe, J. Mater. Chem.,
2005, 15, 3285.
14 M. J. Gim, S. T. Hur, K. W. Park, M. Lee, S. W. Choi and
H. Takezoe, Chem. Commun., 2012, 48, 9968.
15 S. Aya, A. Zep, K. Aihara, K. Ema, K. Pociecha, E. Gorecka,
F. Araoka, K. Ishikawa and H. Takezoe, Opt. Mater. Express,
2014, 4, 662.
16 I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee
and H. C. Lin, ACS Appl. Mater. Interfaces, 2014, 6, 228.
17 (a) S. Taushanoff, K. Van Le, J. Williams, R. J. Twieg,
Conclusions
In summary, we have developed the first BP reactive monomers
possessing the bi-mesogenic core containing one central chiral
linker. By introducing two end-attached acrylic spacers with
different lengths (i.e., carbon number = 6 and 12 for M1 and
M2, respectively) into the first BP reactive monomers, the blue
phase (BPIII) ranges of copolymers could be further extended
and stabilized by solution- and photo-polymerization of M1 and
M2, with a molar ratio of 5 : 5. Instead of photo-polymerization
of double-twisted cylinders to stabilize the BP structure, this
approach is also the first ever tried solution-polymerization
(instead of photo-polymerization only) of monomers to produce
the BP LCs. However, due to the strong side-by-side self-
assembly of the bi-mesogenic cores with the same lengths of
end-attached acrylate spacers in the side-chain homopolymers
P1 and P2, the homopolymerization of M1 and M2 could not
induce any blue phase. Besides, the morphological surface
structure of the irregular filamentous- and spaghetti-like
tangled BPIII was first observed in copolymer P12(soln:5/5) by
AFM in this report. This research opens up a new avenue for
designing novel reactive monomers and polymers that can
stabilize the blue phase efficiently. Accordingly, this report also
offers blue phase reactive monomers for the first time as
suitable dopant candidates of multi-component LC mixtures
to stabilize BPs for the future display applications.
´
B. K. Sadashiva, H. Takezoe and A. Jakli, J. Mater. Chem.,
2010, 20, 5893; (b) M. Lee, S. T. Hur, H. Higuchi, K. Song,
S. W. Choi and H. Kikuchi, J. Mater. Chem., 2010, 20, 5813;
(c) I. Dierking, W. Blenkhorn, E. Credland, W. Drake,
R. Kociuruba, B. Kayser and T. Michael, Soft Matter, 2012,
8, 4355.
Acknowledgements
18 L. Wang, W. He, X. Xiao, F. Meng, Y. Zhang, P. Yang,
L. Wang, J. Xiao, H. Yang and Y. Lu, Small, 2012, 8, 2189.
19 L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang,
M. Ellahi, D. Zhao, H. Yang and L. Guo, J. Mater. Chem. C,
2013, 1, 6526.
The financial support of this project is provided by the Ministry
of Science and Technology (MOST) in Taiwan through MOST
103-2113-M-009-018-MY3 and MOST 103-2221-E-009-215-MY3.
20 S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. D. Wu,
K. C. Lee, C. C. Lo, A. Lien, J. Lu and Y. Su, J. Mater. Chem. C,
2014, 2, 1730.
21 H. J. Coles and M. N. Pivnenko, Nature, 2005, 436, 997.
22 H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang and
T. Kajiyama, Nat. Mater., 2002, 1, 64.
Notes and references
1 (a) D. Y. Kim, S. A. Lee, H. J. Choi, L. C. Chien, M. H. Lee and
K. U. Jeong, J. Mater. Chem. C, 2013, 1, 1375; (b) W. Nishiya,
Y. Takanishi, J. Yamamotob and A. Yoshizawa, J. Mater.
Chem. C, 2014, 2, 3677.
4668 | J. Mater. Chem. C, 2015, 3, 4663--4669
This journal is ©The Royal Society of Chemistry 2015