B. Punji et al. / Polyhedron 28 (2009) 101–106
105
4.3. Synthesis of [PhN(PR-jP)2{Cu(l-I)(MeCN)}2] (4)
Appendix A. Supplementary data
This was synthesized by a procedure similar to that for 2 using
CuI (0.050 g, 0.315 mmol) and 1 (0.062 g, 0.079 mmol). Yield: 91%
(0.09 g), m.p.: 174 °C (dec.). 1H NMR (400 MHz, CDCl3): d 8.87 (d,
CCDC 673994 and 673995 contain the supplementary crystallo-
graphic data for 3 and 4. These data can be obtained free of charge
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: de-
posit@ccdc.cam.ac.uk. Supplementary data associated with this
3
4H, JHH = 9.2 Hz, Ar), 6.67–7.86 (m, 20H, Ar, 5H, Ph), 2.01 (s, 6H,
CH3CN). 31P{1H} NMR (162 MHz, CDCl3): d 91.8 (s). Anal. Calc. for
C50H35I2N3O4P2S2Cu2: C, 48.09; H, 2.82; N, 3.36; S, 5.14. Found: C,
48.02; H, 2.79; N, 3.34; S, 5.11%.
4.4. Synthesis of [{PhN(PR-jP)2}2Cu](PF6) (5)
References
To a solution of 1 (0.084 g, 0.107 mmol) in dichloromethane
(12 ml) Cu(MeCN)4PF6 (0.020 g, 0.054 mmol) was added and the
reaction mixture was stirred for 2 h. The colorless solution ob-
tained was concentrated and diethyl ether (8 ml) was added to
precipitate out the white product. This was then filtered off and
dried under vacuum. Yield: 89% (0.085 g), m.p.: 180 °C (dec.). 1H
[1] (a) G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive
Organometallic Chemistry, Pergamon Press, Oxford, 1982;
(b) L.H. Pignolet (Ed.), Homogeneous Catalysis with Metal Phosphine
Complexes, Plenum, New York, 1983, p. 167;
(c) B. Chaudret, B. Delavaux, R. Poilblanc, Coord. Chem. Rev. 86 (1988) 191;
(d) M.S. Balakrishna, V.S. Reddy, S.S. Krishnamurthy, J.F. Nixon, J.C.T.R.B. St.
Laurent, Coord. Chem. Rev. 129 (1994) 1;
3
NMR (400 MHz, CDCl3): d 8.49 (d, 8H, JHH = 7.6 Hz, Ar), 7.14–
8.23 (m, 40H, Ar, 10H, Ph). 31P{1H} NMR (162 MHz, CDCl3): d
(e) M. Witt, H.W. Roesky, Chem. Rev. 94 (1994) 1163.
[2] (a) D.J. Anderson, K.W. Kramarz, R. Eisenberg, Inorg. Chem. 35 (1996) 2688;
(b) G. Francio, R. Scopelliti, C.G. Arena, G. Bruno, D. Drommi, F. Faraone,
Organometallics 17 (1998) 338;
1
100.7 (s, 4 P), À145.9 (septet, 1P, PF6, JPF = 713 Hz). Anal. Calc.
for C92H58F6N2O8P5S4Cu: C, 62.07; H, 3.28; N, 1.57; S, 7.21. Found:
C, 62.01; H, 3.25; N, 1.53; S, 7.18%.
(c) A. Scrivanti, V. Beghetto, E. Campagna, M. Zanato, U. Matteoli,
Organometallics 17 (1998) 630;
(d) J.R. Torkelson, F.H. Antwi-Nsiah, R. Mc Donald, M. Cowie, J.G. Pruis, K.J.
Jalkanen, R.L. DeKock, J. Am. Chem. Soc. 121 (1999) 3666;
(e) Y. Gao, J.K. Kuncheria, H.A. Jenkins, R.J. Puddephatt, G.P.A. Yap, J. Chem.
Soc., Dalton Trans. (2000) 3212;
5. X-ray crystallography
A crystal of 3 which proved to be twinned was mounted in a
(f) G.A. Bowmaker, J.V. Hanna, R.D. Hart, P.C. Healy, A.H. White, J. Chem. Soc.,
Dalton Trans. (1994) 2621 and references cited therein.
[3] R.J. Puddephatt, Chem. Soc. Rev. 12 (1983) 99.
CryoloopTM with a drop of Paratone oil and placed in the cold nitro-
TM
gen stream of the Kryoflex attachment of the Bruker APEX CCD
diffractometer. A full sphere of data was collected using 606 scans
[4] (a) R.B. King, Acc. Chem. Res. 13 (1980) 243;
(b) T. Appleby, J.D. Woollins, Coord. Chem. Rev. 235 (2002) 121.
[5] (a) G. Calabrò, D. Drommi, G. Bruno, F. Faraone, Dalton Trans. (2004) 81;
(b) G. Calabrò, D. Drommi, C. Graiff, F. Faraone, A. Tiripicchio, Eur. J. Inorg.
Chem. (2004) 1447.
[6] (a) R.P. Kamalesh Babu, S.S. Krishnamurthy, M. Nethaji, J. Organomet. Chem.
454 (1993) 157;
in
x (0.3° per scan) at U = 0°, 120° and 240° using the SMART soft-
ware package [16]. The raw data were reduced to F2 values using
the SAINT+ software [17] and a global refinement of unit cell param-
eters using 9500 reflections chosen from the full data set was per-
formed. Multiple measurements of equivalent reflections provided
the basis for an empirical absorption correction as well as a correc-
tion for any crystal deterioration during the data collection
(b) R.P. Kamalesh Babu, S.S. Krishnamurthy, M. Nethaji, Tetrahedron:
Asymmetry 6 (1995) 427;
(c) R.P. Kamalesh Babu, K. Aprna, S.S. Krishnamurthy, M. Nethaji, Phosphorus,
Sulfur Silicon Relat. Elem. 103 (1995) 39.
[7] (a) B. Punji, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 46 (2007) 11316;
(b) B. Punji, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 46 (2007) 10268;
(c) B. Punji, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 45 (2006) 9454.
[8] (a) For example see: P.J. Stang, B. Olenyuk, Acc. Chem. Res. 30 (1997) 502;
(b) D. Ranganathan, V. Haridas, R. Gilardi, I.L. Karle, J. Am. Chem. Soc. 120
(1998) 10793;
(
TWINABS [18]). The structure was solved by direct methods and
refined by full-matrix least-squares procedure using the SHELXTL
program package [19]. Hydrogen atoms were placed in calculated
positions and included as riding contributions with isotropic dis-
placement parameters tied to those of the attached non-hydrogen
atoms.
(c) M. Mazik, D. Blaser, R. Boese, Tetrahedron 55 (1999) 7835;
(d) I.S. Lee, D.M. Shin, Y.K. Chung, Cryst. Growth Des. 3 (2003) 521;
(e) T.Q. Nguyen, R. Martel, P. Avouris, M.L. Bushey, L. Brus, C. Nuckolls, J. Am.
Chem. Soc. 126 (2004) 5234;
(f) D.S. Li, Y.Y. Wang, X.J. Luan, P. Liu, C.H. Zhou, H. Ma, Q.H. Shi, Eur. J. Inorg.
Chem. (2005) 2678.
A crystal of 4 was mounted on a OXFORD DIFFRACTION XCALI-
BUR-S CCD system equipped with graphite monochromated Mo K
radiation (0.71073 Å). The data were collected in the –2h scan
a
x
[9] (a) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Organometallics 24 (2005)
3780;
mode and an absorption correction was applied by using multi-
scan techniques. The structure was solved by direct methods
(b) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 44 (2005)
7925;
(
SHELXS 97) and refined by full-matrix least-squares against F2 using
the SHELXL 97 software [19b]. Non-hydrogen atoms were refined
with anisotropic thermal parameters. All hydrogen atoms were
geometrically fixed and allowed to refine using a riding model.
(c) B. Punji, M.S. Balakrishna, Indian J. Chem. A 45 (2006) 1390;
(d) B. Punji, J.T. Mague, M.S. Balakrishna, Eur. J. Inorg. Chem. (2007) 720;
(e) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 45 (2006)
5893;
(f) P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 44 (2006)
6678;
(g) D. Suresh, M.S. Balakrishna, K. Rathinasamy, D. Panda, J.T. Mague, Dalton
Trans. (2008) 2285;
Acknowledgments
(h) S. Priya, M.S. Balakrishna, J.T. Mague, Inorg. Chem. Commun. 4 (2001) 437.
[10] (a) B. Punji, M.S. Balakrishna, J. Organomet. Chem. 692 (2007) 1683;
(b) R. Venkateswaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 46 (2007)
809;
We are grateful to the Department of Science and Technology
(DST), New Delhi for funding through Grant SR/S1/IC-02/2007.
B.P. thanks CSIR for Research Fellowship (JRF and SRF). We also
thank Department of Chemistry Instrumentation Facilities,
Bombay, for spectral and analytical data and the Louisiana Board
of Regents through Grant LEQSF (2002-03)-ENH-TR-67 for pur-
chase of the CCD diffractometer and the Chemistry Department
of Tulane University for support of the X-ray laboratory. National
Single Crystal X-ray Facility Center, IIT Bombay is acknowledged
for solving one of the structures.
(c) B. Punji, J.T. Mague, M.S. Balakrishna, J. Organomet. Chem. 691 (2006)
4265;
(d) B. Punji, J.T. Mague, M.S. Balakrishna, Dalton Trans. (2006) 1322;
(e) B. Punji, C. Ganesamoorthy, M.S. Balakrishna, J. Mol. Catal. A: Chem. 259
(2006) 78;
(f) B. Kaboudin, M.S. Balakrishna, Synth. Commun. 31 (2001) 2773.
[11] (a) J. Diez, M.P. Gamasa, J. Gimeno, E. Lastra, A. Aguirre, S. Garcfa-Granda,
Organometallics 12 (1993) 2213;
(b) I.D. Salter, S.A. Williams, T. Adatia, Polyhedron 14 (1995) 2803;