A. J. Goodman et al. / Bioorg. Med. Chem. Lett. 19 (2009) 309–313
313
J.; Porreca, F.; Makriyannis, A.; Malan, T. P. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
10529.
5. Valenzano, K. J.; Tafesse, L.; Lee, G.; Harrison, J. E.; Boulet, J. M.; Gottschall, S. L.;
Mark, L.; Pearson, M. S.; Miller, W.; Shan, S.; Rabadi, L.; Rotshteyn, Y.; Chaffer, S.
M.; Turchin, P. I.; Elsemore, D. A.; Toth, M.; Koetzner, L.; Whiteside, G. T.
Neuropharmacology 2005, 48, 658.
6. (a) Omura, H.; Kawai, M.; Shima, A.; Iwata, Y.; Ito, F.; Masuda, T.; Ohta, A.;
Makita, N.; Omoto, K.; Sugimoto, H.; Kikuchi, A.; Iwata, H.; Ando, K. Bioorg. Med.
Chem. Lett. 2008, 18, 3310; (b) Verbist, B. M. P.; De Cleyn, M. A. J.; Surkyn, M.;
Fraiponts, E.; Aerssens, J.; Nijsen, M. J. M.; Gijsen, H. J. M. Bioorg. Med. Chem.
Lett. 2008, 18, 2574; (c) Pagé, D.; Balaux, E.; Boisvert, L.; Liu, Z.; Milburn, C.;
Tremblay, M.; Wei, Z.; Woo, S.; Luo, X.; Cheng, Y.-X.; Yang, H.; Srivastava, S.;
Zhou, F.; Brown, W.; Tamaszewski, M.; Walpole, C.; Hdzic, L.; St-Onge, S.;
Godbout, C.; Salois, D.; Payza, K. Bioorg. Med. Chem. Lett. 2008, 18, 3695.
7. Ohta, H.; Ishizaka, T.; Tasuzuki, M.; Yoshinaga, M.; Iida, I.; Yamaguchi, T.;
Tomishima, Y.; Futaki, N.; Toda, Y.; Saito, S. Bioorg. Med. Chem. 2008, 16, 1111.
8. DiMauro, E. F.; Buchanan, J. L.; Cheng, A.; Emkey, R.; Hitchcock, S. A.; Huang, L.;
Huang, M. Y.; Janosky, B.; Lee, J. H.; Li, X.; Martin, M. W.; Tomlinson, S. A.;
White, R. D.; Zheng, X. M.; Patel, V. F.; Fremeau, R. T., Jr. Bioorg. Med. Chem. Lett.
2008, 18, 4267.
9. Ermann, M.; Riether, D.; Walker, E. R.; Mushi, I. F.; Jenkins, J. E.; Noya-Marino,
B.; Brewer, M. L.; Taylor, M. G.; Amouzegh, P.; East, S. P.; Dymock, B. W.;
Gemkow, M. J.; Kahrs, A. F.; Ebneth, A.; Löbbe, S.; O’Shea, K.; Shih, D.-T.;
Thomson, D. Bioorg. Med. Chem. Lett. 2008, 18, 1725.
10. Worm, K.; Zhou, Q. J.; Saeui, C. T.; Green, R. C.; Cassell, J. A.; Stabley, G. J.;
DeHaven, R. N.; Conway-James, N.; LaBuda, C. J.; Koblish, M.; Little, P. J.; Dolle,
R. E. Bioorg. Med. Chem. Lett. 2008, 18, 2830.
Figure 5. In vivo activity of compound 40 in the hindpaw incision model.
Mechanical paw-withdrawal thresholds for the left hindpaw of the hindpaw
incision group and compound 40 treated group. Data are plotted as the mean
( SEM) paw-withdrawal threshold of the left paw for each group. *p < 0.05
compared to vehicle-treated group. N = 8/group. Vehicle response 9.4 g. Drugs
were administered 30 min before testing.
11. (a) Chen, J. J.; Zhang, Y.; Hammond, S.; Dewdney, N.; Ho, T.; Lin, X.; Browner, M.
F.; Castelhano, A. L. Bioorg. Med. Chem. Lett. 1996, 6, 1601; (b) McBriar, M. D.;
Clader, J. W.; Chu, I.; Del Vecchio, R. A.; Favreau, L.; Greenlee, W. J.; Hyde, L. A.;
Nomeir, A. A.; Parker, E. M.; Pissarnitski, D. A.; Song, L.; Zhoa, Z. Bioorg. Med.
Chem. Lett. 2008, 18, 215.
12. (a) Abbreviations: TBTU, O-(Benzotriazol-1-yl)-N, N, N0, N0-tetramethyluronium
tetrafluoroborate; BEP, 2-Bromo-1-ethylpyridinium tetrafluoroborate; Bop-Cl,
Bis(2-oxo-3-oxazolidinyl)phosphonic chloride; DIEA, diisopropylethylamine;
DBU, 1, 8-diazabicyclo-[5.4.0]undec-7-ene; (b) compounds were fully
characterized by 1H NMR and LC/MS.
13. (a) Binding assays were performed by modification of the method of Pinto, J. C.;
Potie, F.; Rice, K. C.; Boring, D.; Johnson, M. R.; Evans, D. M.; Wilken, G. H.;
Cantrell, C. H.; Howlett A. Mol. Pharmacol. 1994, 46, 516–522: Receptor binding
assays were performed by incubating 0.2–0.6 nM [3H]CP55940 with
membranes prepared from cells expressing cloned human CB1 or CB2
receptors in buffer consisting of 50 mM Tris–HCl, pH 7.0, 5.0 mM MgCl2,
1.0 mM ethylene glycol-bis(2-aminoethylether)-N,N,N0,N0-tetraacetic acid
(EGTA), and 1.0 mg/ml fatty acid free bovine serum albumin. After
incubation for 60 min at room temperature for CB2 binding or 120 min at
30 °C for CB1 binding, the assay mixtures were filtered through GF/C filters that
had been pre-soaked overnight in 0.5% (w/v) poly(ethyleneimine) and 0.1% BSA
in water. The filters were rinsed 6 times with one mL each of cold assay buffer,
Figure 6. In vivo activity of orally administered compound 40 in the presence and
absence of ABT in the hindpaw incision model. Mechanical paw-withdrawal
thresholds for the left hindpaw of the hindpaw incision group, ABT, compound 40
and ABT/compound 40 treated groups. Data are plotted as the mean ( SEM) paw-
withdrawal threshold of the left paw for each group. All statistical analyses were
performed with one-way ANOVA followed by post-hoc comparisons (protected t-
test) among groups. *p < 0.01 compared to ABT-vehicle treated hindpaw incised
animals. N = 8/group. Vehicle response 8.9 g. Drugs were administered 120 min
before testing.
30 lL of MicroScint 20 (Perkin-Elmer) was added to each filter and the
radioactivity on the filters was determined by scintillation spectroscopy in a
TopCount (Perkin-Elmer). Nonspecific binding was determined in the presence
of 10
modification of the method by Selley, D. E.; Stark, S.; Sim, L. J.; Childers, S. R.
Life Sci. 1996, 59, 659–668: CB2-mediated stimulation of [35S]GTP
S binding
was measured in a mixture containing 100–150 pM [35S]GTP
S, 150 mM NaCl,
45 mM MgCl2, 3 M GDP, 0.4 mM dithiothreitol, 1.0 mM EGTA, 1.0 mg/mL fatty
acid free bovine serum albumin, 25 g of membrane protein, and agonist in a
total volume of 250 L of 50 mM Tris–HCl buffer, pH = 7.0 in 96-well Basic
lM WIN55212-2.(b) The [ cS binding method is a major
35S]GTP
c
c
of this scaffold afforded compound 40. In vivo efficacy of 40 was
demonstrated in the rodent hindpaw incisional model after intra-
peritoneal administration. Lack of activity after oral dosing of 40
was attributable to the rapid metabolism of the compound. At-
tempts to improve the metabolic stability of these CB2 selective
compounds will be reported in due course.
l
l
l
FlashPlates (PerkinElmer). After incubation at room temperature for 6 h, the
plates were centrifuged at 800g at 4 °C for 5 min and the radioactivity bound to
the membranes was determined by scintillation spectrometry using
TopCount (PerkinElmer). The extent of stimulation over basal
35S]GTP
percentage of the stimulation by 10
S binding was determined in the absence of
M WIN55212-2 was between 50%
a
[
c
S
binding was calculated as
WIN55212-2. Basal [35S]GTP
a
c
lM
References and notes
agonist. Generally, the stimulation by 10
l
and 100% over basal binding. Full agonists stimulate binding to the same
maximal extent as WIN55212-2.
1. (a) Lambert, D. M.; Fowler, C. J. J. Med. Chem. 2005, 48, 5059; (b) Voth, E. A.;
Schwartz, R. H. Ann. Intern. Med. 1997, 126, 791.
2. Pertwee, R. G. Prog. Neurobiol. 2001, 63, 569.
3. Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.;
Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R.; Mechoulam, R.; Pertwee,
R. G. Pharmacol. Rev. 2002, 54, 161.
14. (a) Halfpenny, P. R.; Hill, R. G.; Horwell, D. C.; Hughes, J.; Hunter, J. C.; Johnson,
S.; Rees, D. C. J. Med. Chem. 1989, 32, 1620; (b) Snow, R. J.; Abeywardane, A.;
Cambell, S.; Lord, J.; Kashem, M. A.; Khine, H. H.; King, J.; Kowalski, J. A.; Pullen,
S. S.; Roma, T.; Roth, G. P.; Sarko, C. R.; Wilson, N. S.; Winters, M. P.; Wolak, J. P.;
Cywin, C. L. Bioorg. Med. Chem. Lett. 2007, 17, 3660.
15. Brennan, T. J.; Vandermeulen, E. P.; Gebhart, G. F. Pain 1996, 64, 493.
16. Obach, R. S.; Baxter, J. G.; Liston, T. E.; Silber, M.; Jones, B. C.; Macintyre, F.;
Rance, D. J.; Wastall, P. J. Pharmacol. Exp. Ther. 1997, 283, 46.
4. (a) Quartilho, A.; Mata, H. P.; Ibrahim, M. M.; Vanderah, T. W.; Porreca, F.;
Makriyannis, A.; Malan, T. P. Anesthesiology 2003, 99, 955; (b) Ibrahim, M. M.;
Deng, H.; Zvonok, A.; Cockayne, D. A.; Kwan, J.; Mata, H. P.; Vanderah, T. W.; Lai,