A. Manchoju, R. G. Thorat, S. V. Pansare
SHORT COMMUNICATION
Acknowledgments
These investigations were supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the
Canada Foundation for Innovation.
[1] For selected reviews, see: a) Y. Liu, S.-J. Han, W.-B. Liu, B. M.
Stoltz, Acc. Chem. Res. 2015, 48, 740; b) A. Khan, Y. Zhang,
Synlett 2015, 26, 853; c) K. W. Quasdorf, L. E. Overman, Na-
ture 2014, 516, 181; d) L. M. Repka, S. E. Reisman, J. Org.
Chem. 2013, 78, 12314; e) M. Bella, T. Gasperi, Synthesis 2009,
1583; f) I. Marek, G. Sklute, Chem. Commun. 2007, 1683; g) J.
Christoffers, A. Barro, Adv. Synth. Catal. 2005, 347, 1473.
[2] a) S. D. Penrose, A. J. Scott, P. Breccia, A. F. Haughan, R. W.
Burli, R. E. Jarvis, C. Dominguez, Org. Lett. 2015, 17, 1401;
b) C. G. Watson, A. Balanta, T. G. Elford, S. Essafi, J. N. Har-
vey, V. K. Aggarwal, J. Am. Chem. Soc. 2014, 136, 17370; c) Y.
Minko, I. Marek, Chem. Commun. 2014, 50, 12597; d) Y.
Minko, M. Pasco, L. Lercher, I. Marek, Nat. Protoc. 2013, 8,
749; e) E. A. Tiong, J. L. Gleason, Org. Lett. 2009, 11, 1725,
and references cited therein.
Scheme 5. Conversion of spiromorpholinones to functionalized
quaternary stereocenters.
[3]
For selected recent reports, see: a) E. Alberch, C. Brook, S. A.
Asad, M. Shevryev, J. S. Ulicki, M. M. Hossain, Synlett 2015,
26, 388; b) X. Guo, Y. Dai, T. Guo, A. Franchino, D. J. Dixon,
J. Ye, Org. Lett. 2015, 17, 1505; c) T.-S. Mei, H. H. Patel, M. S.
Sigman, Nature 2014, 508, 340; d) E. Badiola, B. Fiser, E. Go-
mez-Bengoa, A. Mielgo, I. Olaizola, I. Urruzuno, J. M. Garcia,
J. M. Odriozola, J. Razkin, M. Oiarbide, C. Palomo, J. Am.
Chem. Soc. 2014, 136, 17869; e) Y. Zhu, L. Zhang, S. Luo, J.
Am. Chem. Soc. 2014, 136, 14642; f) A. Khan, L. Yang, J. Xu,
L. Y. Jin, Y. J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 11257;
g) J. L. Li, B. Sahoo, C.-G. Daniliuc, F. Glorius, Angew. Chem.
Int. Ed. 2014, 53, 10515; h) F. Zhou, G.-J. Cheng, W. Yang, Y.
Long, S. Zhang, Y.-D. Wu, X. Zhang, Q. Cai, Angew. Chem.
Int. Ed. 2014, 53, 9555; i) S. E. Denmark, T. W. Wilson, M. T.
Burk, Chem. Eur. J. 2014, 20, 9268; j) A. Jolit, P. M. Walleser,
G. P. A. Yap, M. A. Tius, Angew. Chem. Int. Ed. 2014, 53, 6180;
k) Z. Chen, J. Sun, Angew. Chem. Int. Ed. 2013, 52, 13593; l)
B. Sam, T. P. Montgomery, M. J. Krische, Org. Lett. 2013, 15,
3790; m) W.-B. Liu, C. M. Reeves, S. C. Virgil, B. M. Stoltz, J.
Am. Chem. Soc. 2013, 135, 10626; n) B. M. Trost, M. Osipov,
Angew. Chem. Int. Ed. 2013, 52, 9176; o) A. L. Gottumukkala,
K. Matcha, M. Lutz, J. G. de Vries, A. J. Minnard, Chem. Eur.
J. 2012, 18, 6907.
The crude carboxylic acid obtained from the dissolving
metal reduction of the spiromorpholinones was subjected
to a two-step protocol involving reduction with borane fol-
lowed by oxidative cleavage of the resulting vicinal diol to
an aldehyde.[17] The aldehyde was directly employed in a
Horner–Wadsworth–Emmons (HWE) reaction to provide
29 or oxidized to the corresponding carboxylic acid 30
(from 14). Similarly, 31, 32 and 33 were obtained from
morpholinones 18, 25 and 23 respectively (Scheme 5). Com-
parison of the optical rotations of the acids 31[18] and 32[19]
with reported values confirmed the “R” configuration. The
formation of the “R” enantiomer also confirms the stereo-
chemical outcome of the Prins reaction. The configurations
of 29, 30 and 33 are assigned by analogy.
Notably, the methyl ester of the hydroxy acid 32 prepared
in this study serves as a key starting material in the synthe-
sis of (+)-α-cuparenone, a quaternary stereocenter contain-
ing sesquiterpene. We anticipate that the other spiro-
morpholinones prepared in this study will also provide qua-
ternary stereocenter containing hydroxy aldehydes or carb-
oxylic acids by employing a protocol similar to the one de-
scribed in Scheme 5.[20]
[4]
[5]
a) B. W. H. Turnbull, P. A. Evans, J. Am. Chem. Soc. 2015, 137,
6156; b) J. P. Das, I. Marek, Chem. Commun. 2011, 47, 4593,
see also ref.[2c]
.
a) V. F. Rudchenko, V. G. Shtamburg, A. P. Pleshkova, R. G.
Kostyanovski, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl.
Transl.) 1981, 30, 825; b) S. V. Pansare, V. A. Adsool, Org.
Lett. 2006, 8, 5897; c) V. A. Adsool, S. V. Pansare, Org. Biomol.
Chem. 2008, 6, 2011.
Conclusions
In conclusion, we have developed a modular synthesis of
functionalized quaternary carbon containing building
blocks by sequential, stereoselective C–C bond forming re-
actions on chiral amino alcohol derived morpholinones.
The methodology has the potential to rapidly assemble a
variety of quaternary carbon atoms that are adorned with
a selection of alkyl and aryl substituents. This study has
also identified S-2-(methylamino)-1,1-diphenylpropanol as
a potential replacement for 1R,2S-ephedrine in the morph-
olinone template based methodology. Current efforts focus
on other applications of the alkylidenemorpholinones.
[6]
[7]
Prepared from S-ethylalaninate by adaptation of the reported
procedure, see: T. Aratani, M. Hazama, Y. Yoneyoshi, G. Su-
zukamo, Eur. Pat. Appl. 1983 EP75868A219830406.
1
For similar trends in the H NMR spectra of unambiguously
synthesized and isomerically pure a) prenyl derivatives, see: G.
Solladié, V. Berl, Synlett 1991, 795, and b) 2-alkoxy alkenoates,
see: K. Fuchibe, N. Iwasawa, Tetrahedron 2000, 56, 4907.
Details of the synthesis and characterization of (E)-7, (E)-8 and
(E)-10 are provided in the Supporting Information.
a) The Pd-catalyzed cross coupling of alkenyl halides generally
proceeds with retention of configuration, Handbook of Organ-
opalladium Chemistry for Organic Synthesis, part III (Ed.: E.
Negishi), Wiley-Interscience, New York, 2002; b) for cross-cou-
pling reactions of bromo-substituted exo-glycals, see: H.-T, T.
Thien, A. Novoa, N. Pelligrini-Moïse, F. Chretién, C. Didier-
jean, Y. Chapleur, Eur. J. Org. Chem. 2011, 6939.
[8]
[9]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and spectroscopic data for all com-
pounds.
5942
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 5939–5943