ACS Catalysis
Page 8 of 10
1
Shi, Y.; Hoveyda, A. H. Catalytic Enantioselective Conjugate
Hydroamination
of
1,3-Dienes
Catalyzed
by
2
3
4
5
6
7
8
9
Additions of (Pin)B-Substituted Allylcopper Compounds Generated in
Situ from Butadiene or Isoprene. Angew. Chem. Int. Ed. 2016, 55,
9997–10002.
(8) Wang, Y.-M.; Buchwald, S. L. Enantioselective CuH-Catalyzed
Hydroallylation of Vinylarenes. J. Am. Chem. Soc. 2016, 138, 5024–
5027.
Bis(Phosphine)Carbodicarbene–Rhodium Complexes. J. Am. Chem.
Soc. 2014, 136, 6227–6230. (b) Roberts, C. C.; Matías, D. M.;
Goldfogel, M. J.; Meek, S. J. Lewis Acid Activation of Carbodicarbene
Catalysts for Rh-Catalyzed Hydroarylation of Dienes. J. Am. Chem.
Soc. 2015, 137, 6488–6491. (c) Goldfogel, M. J.; Meek, S. J.
Diastereoselective Synthesis of Vicinal Tertiary and N-Substituted
Quaternary Stereogenic Centers by Catalytic Hydroalkylation of
Dienes. Chem. Sci. 2016, 7, 4079–4084. (d) Goldfogel, M. J.; Roberts,
C. C.; Manan, R. S.; Meek, S. J. Diastereoselective Synthesis of γ-
Substituted 2-Butenolides via (CDC)-Rh-Catalyzed Intermolecular
Hydroalkylation of Dienes with Silyloxyfurans. Org. Lett. 2017, 19,
90–93.
(18) Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.;
Meek, S. J. Chiral Pincer Carbodicarbene Ligands for Enantioselective
Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-
Dienes with Indoles. J. Am. Chem. Soc. 2017, 139, 15580–15583.
(19) Lennox, A. J. J.; Lloyd-Jones, G. C. Organotrifluoroborate
Hydrolysis: Boronic Acid Release Mechanism and an Acid–Base
Paradox in Cross-Coupling. J. Am. Chem. Soc. 2012, 134, 7431–7441.
(9) (a) Han, J. T.; Jang, W. J.; Kim, N.; Yun, J. Asymmetric
Synthesis of Borylalkanes via Copper-Catalyzed Enantioselective
Hydroallylation. J. Am. Chem. Soc. 2016, 138, 15146–15149. (b) Lee,
J.; Torker, S.; Hoveyda, A. H. Versatile Homoallylic Boronates by
Chemo-, SN2′-, Diastereo- and Enantioselective Catalytic Sequence of
Cu−H Addition to Vinyl-B(Pin)/Allylic Substitution. Angew. Chem.
Int. Ed. 2017, 56, 821–826.
(10) Mailig, M.; Hazra, A.; Armstrong, M. K.; Lalic, G. Catalytic
Anti-Markovnikov Hydroallylation of Terminal and Functionalized
Internal Alkynes: Synthesis of Skipped Dienes and Trisubstituted
Alkenes. J. Am. Chem. Soc. 2017, 139, 6969–6977. (b) Xu, G.; Zhao,
H.; Fu, B.; Cang, A.; Zhang, G.; Zhang, Q.; Xiong, T.; Zhang, Q.
Ligand-Controlled Regiodivergent and Enantioselective Copper-
Catalyzed Hydroallylation of Alkynes. Angew. Chem. Int. Ed. 2017,
56, 13130–13134.
(11) Xu, G.; Fu, B.; Zhao, H.; Li, Y.; Zhang, G.; Wang, Y.; Xiong,
T.; Zhang, Q. Enantioselective and Site-Specific Copper-Catalyzed
Reductive Allyl–Allyl Cross-Coupling of Allenes. Chem. Sci. 2019, 10,
1802–1806.
(12) Sommer, H.; Marek, I. Diastereo- and Enantioselective Copper
Catalyzed Hydroallylation of Disubstituted Cyclopropenes. Chem. Sci.
2018, 9, 6503–6508.
(13) (a) Deutsch, C.; Krause, N.; Lipshutz, B. H. CuH-Catalyzed
Reactions. Chem. Rev. 2008, 108, 2916−2927. (b) Lipshutz, B. H.
Rediscovering Organocopper Chemistry Through Copper Hydride. It’s
All About the Ligand. Synlett 2009, 509−524. (c) Jordan, A. J.; Lalic,
G.; Sadighi, J. P. Coinage Metal Hydrides: Synthesis, Characterization,
and Reactivity. Chem. Rev. 2016, 116, 8318−8372.
(14) Huang, Y.; Ma, C.; Lee, Y. X.; Huang, R.-Z.; Zhao, Y. Cobalt-
Catalyzed Allylation of Heterobicyclic Alkenes: Ligand-Induced
Divergent Reactivities. Angew. Chem. Int. Ed. 2015, 54, 13696–13700.
(15) For an example of Fe-catalyzed HAT hydroallylation of
allylacetates, see: Qi, J.; Zheng, J.; Cui, S. Fe(III)-Catalyzed
Hydroallylation of Unactivated Alkenes with Morita–Baylis–Hillman
Adducts. Org. Lett. 2018, 20, 1355–1358.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) For an overview of Rh-catalyzed allylations with alkynes and
allenes, see: Koschker, P.; Breit, B. Acc. Chem. Res. 2016, 49, 1524–
1536.
(21) (a) Takahashi, K.; Miyake, A.; Hata, G. Palladium-catalyzed
Reactions of 1,3-Dienes with Active Methylene Compounds. IV.
Palladium-diphosphine Complex Catalysts. Bull. Chem. Soc. Jpn.
1972, 45, 1183−1191. (b) Andell, O. S.; Bäckvall, J. E.; Moberg, C.
Nickel- and Palladium-Catalyzed Additions of Nucleophiles to Cyclic
1,3-Dienes. Acta Chem. Scand. 1986, B 40, 184−189. (c) Mignani, G.;
Morel, D.; Colleuille, Y. A Novel Method for the Isoprenylation of β-
Dicarbonyl Compounds. Tet. Lett. 1985, 26, 6337–6340. (d) Leitner,
A.; Larsen, J.; Steffens, C.; Hartwig, J. F. Palladium-Catalyzed
Addition of Mono- and Dicarbonyl Compounds to Conjugated Dienes.
J. Org. Chem. 2004, 69, 7552–7557. (e) Adamson, N. J.; Wilbur, K. C.
E.; Malcolmson, S. J. Enantioselective Intermolecular Pd-Catalyzed
Hydroalkylation
of
Acyclic
1,3-Dienes
with
Activated
Pronucleophiles. J. Am. Chem. Soc. 2018, 140, 2761–2764.
(22) Ni: (a) Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J. F. A
General Nickel-Catalyzed Hydroamination of 1,3-Dienes by
Alkylamines: Catalyst Selection, Scope, and Mechanism. J. Am.
Chem. Soc. 2002, 124 (14), 3669–3679. Pd: (b) Löber, O.; Kawatsura,
M.; Hartwig, J. F. Palladium-Catalyzed Hydroamination of 1,3-Dienes:
A Colorimetric Assay and Enantioselective Additions. J. Am. Chem.
Soc. 2001, 123, 4366–4367. (c) Adamson, N. J.; Hull, E.; Malcolmson,
S. J. Enantioselective Intermolecular Addition of Aliphatic Amines to
Acyclic Dienes with a Pd–PHOX Catalyst J. Am. Chem. Soc. 2017,
139, 7180–7183. (d) Park, S.; Malcolmson, S. J. Development and
Mechanistic Investigations of Enantioselective Pd-Catalyzed
Intermolecular Hydroaminations of Internal Dienes. ACS Catalysis
2018, 8, 8468–8476. Rh: (e) Yang, X.-H.; Dong, V. M. Rhodium-
Catalyzed Hydrofunctionalization: Enantioselective Coupling of
Indolines and 1,3-Dienes J. Am. Chem. Soc. 2017, 139, 1774–1777.
(23) (a) Liao, L.; Sigman, M. S. Palladium-Catalyzed
Hydroarylation of 1,3-Dienes with Boronic Esters via Reductive
Formation of π-Allyl Palladium Intermediates under Oxidative
Conditions. J. Am. Chem. Soc. 2010, 132 (30), 10209–10211. (b)
Podhajsky, S. M.; Iwai, Y.; Cook-Sneathen, A.; Sigman, M. S.
Asymmetric palladium-catalyzed hydroarylation of styrenes and dienes
Tetrahedron 2011, 67, 4435–4441. For a recent related enantioselective
hydroarylation of alkynes, see: (c) Cruz, F. A.; Zhu, Y.; Tercenio, Q.
D.; Shen, Z.; Dong, V. M. Alkyne Hydroheteroarylation:
Enantioselective Coupling of Indoles and Alkynes via Rh-Hydride
Catalysis. J. Am. Chem. Soc. 2017, 139, 10641–10644.
(16) (a) Trost, B. M.; Toste, F. D. Ruthenium-Catalyzed
Cycloisomerization of 1,6-Enynes Initiated by C−H Activation. J. Am.
Chem. Soc. 1999, 121, 9728–9729. (b) Brummond, K. M.; Chen, H.;
Mitasev, B.; Casarez, A. D. Rhodium(I)-Catalyzed Ene-Allene
Carbocyclization Strategy for the Formation of Azepines and
Oxepines. Org. Lett. 2004 6, 2161–2163. (c) Li, Q.; Yu, Z.-X.
Conjugated Diene-Assisted Allylic C−H Bond Activation: Cationic
Rh(I)-Catalyzed Syntheses of Polysubstituted Tetrahydropyrroles,
Tetrahydrofurans, and Cyclopentanes from Ene-2-Dienes, J. Am.
Chem. Soc. 2010 132, 4542–4543. (d) Li, W.; Yuan, W.; Shi, M.;
Hernandez, E.; Li, G. Rhodium(I)-Catalyzed Intramolecular Ene
Reaction of Vinylidenecyclopropanes and Alkenes for the Formation
of Bicyclo[5.1.0]octylenes, Org. Lett. 2010 12, 64–67. (e) Li, Q.; Yu,
Z.-X. Enantioselective Rhodium-Catalyzed Allylic C–H Activation for
the Addition to Conjugated Dienes. Angew. Chem. Int. Ed. 2011, 50,
2144–2147. (f) Lu, B.-L.; Shi, M. Synthesis of Functionalized
Polycyclic Compounds: Rhodium(I)-Catalyzed Intramolecular
Cycloaddition of Yne and Ene Vinylidenecyclopropanes. Angew.
Chem. Int. Ed. 2011, 50, 12027–12031. (g) Li, Q.; Yu, Z.-X. Density
Functional Theory Study of the Mechanism of the Rhodium(I)-
Catalyzed Conjugated Diene Assisted Allylic C–H Bond Activation
and Addition to Alkenes Using Ene-2-dienes As Substrates,
Organometallics 2012, 31, 5185–519.
(24) (a) Yang, X.-H.; Davison, R. T.; Dong, V. M. Catalytic
Hydrothiolation: Regio- and Enantioselective Coupling of Thiols and
Dienes. J. Am. Chem. Soc. 2018, 140, 10443–10446. (b) Yang, X.-H.;
Davison, R. T.; Nie, S.-Z.; Cruz, F. A.; McGinnis, T. M.; Dong, V. M.
(17) (a) Goldfogel, M. J.; Roberts, C. C.; Meek, S. J. Intermolecular
ACS Paragon Plus Environment