to the 3-position of indole 1a. Surprisingly, the connection
to indole was made at the 5-position of the starting alcohol
2a; i.e., the hydrogen atom at this position was removed,
and no CdC bond remained in the final product (Figure 1).
Table 1. Effect of Catalyst and Solvent on the Cyclization
Reaction of 3,4-Undecadien-1-ol 2a in the Presence of Indole 1a
NMR yield
catalyst
(mol %)
2a
time
(%) of
entry
solvent
THF
(equiv) (h)
3aaa
b
c
1
2
3
4
5
6
7
8
9
10
a
AuCl3 (5)
AuCl(PPh3) (5) THF
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.0
1.2
4
27
4
PtCl4 (5)
PtCl4 (5)
PtCl4 (5)
PtCl4 (5)
PtCl4 (5)
PtCl4 (5)
PtCl4 (5)
PtCl4 (3)
THF
77 (74d)
e
DMSO
CH3CN
ClCH2CH2Cl
toluene
MeOH
THF
19
3.5
4
60
64
7
72
f
24
6
60d
THF
22.5 59d
1H NMR yield using CH2Br2 as the internal standard. b 3aa was not
formed, and the reacion afforded 4aa in 84% isolated yield. c The recoveries
of indole 1a and ꢀ-allenol 2a were 89% and 92%, respectively. d Isolated
yield. e The recoveries of indole 1a and ꢀ-allenol 2a were 100% and 94%,
respectively. f The recovery of indole 1a was 80%, and ꢀ-allenol 2a
decomposed.
Figure 1. ORTEP representation of the product 3aa.
In terms of solvent effect, THF is better than other solvents
screened, such as DMSO, CH3CN, DCE, toluene, etc. We
also observed that 1.2 equiv of ꢀ-allenol 2a is necessary
(compare entry 9 with entry 3, Table 1). When 3 mol % of
PtCl4 was used, the yield of 3aa was lower with a prolonged
reaction time (compare entry 10 with entry 3, Table 1). Thus,
we defined the experimental protocol for the cyclization of
ꢀ-allenols with indoles under the catalysis of 5 mol % of
PtCl4 in THF at room temperature as the standard reaction
conditions to afford indole derivatives with a cyclic ether at
the 3-position.
This new transformation was quite general. Some of the
typical results are listed in Table 2. With the N-unprotected
simple indole 1a, the cyclization of ꢀ-allenols 2a-2d
afforded the products 3aa-3ad in 71-74% isolated yields
(entries 1-4, Table 2). Other N-unprotected indoles with
substituents at the 5-position 1b-1d can also successfully
afford the corresponding products 3ba-3da (entries 5-8,
Table 2). A methyl group may be introduced to the 2-position
of indole (entry 8, Table 2). The 1-position of indoles may
also be substituted with an alkyl (entries 9-13, Table 2) as
well as a phenyl group (entries 14 and 15, Table 2). However,
a tosyl group inhibited this cyclization reaction (entry 16,
Table 2).
1). Fortunately, when PtCl4 was applied, an unexpected 1:1
cyclization product was isolated in 77% NMR yield (entry
3, Table 1). The structure was further established by the
X-ray studies of this product6 to be 3-(2-hexyl-tetrahydro-
2H-pyran-2-yl)-1H-indole 3aa, indicating the ꢀ-allenols were
cyclized to form a six-membered ring, which was attached
(3) (a) Ma, S.; Zhao, S. J. Am. Chem. Soc. 1999, 121, 7943. (b) Ma, S.;
Zhao, S. J. Am. Chem. Soc. 2001, 123, 5578. (c) Ma, S.; Gao, W. J. Org.
Chem. 2002, 67, 6104. (d) Ma, S.; Li, L. Org. Lett. 2000, 2, 941. (e) Ma,
S.; Duan, D.; Shi, Z. Org. Lett. 2000, 2, 1419. (f) Ma, S.; Gao, W. Org.
Lett. 2002, 4, 2989. (g) Ma, S.; Jiao, N. Angew. Chem., Int. Ed. 2002, 41,
4737. (h) Ma, S.; Jiao, N.; Zhao, S.; Hou, H. J. Org. Chem. 2002, 67, 2837.
(i) Ma, S.; Jiao, N.; Yang, Q.; Zheng, Z. J. Org. Chem. 2004, 69, 6463. (j)
Ma, S.; Jiao, N.; Zheng, Z.; Ma, Z.; Lu, Z.; Ye, L.; Deng, Y.; Chen, G.
Org. Lett. 2004, 6, 2193. (k) Ma, S.; Shi, Z. Chem. Commun. 2002, 540.
(l) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387. (m) Ma, S.; Xie, H. J.
Org. Chem. 2002, 67, 6575. (n) Ma, S.; Yu, F.; Gao, W. J. Org. Chem.
2003, 68, 5943. (o) Ma, S.; Yu, Z. Angew. Chem., Int. Ed. 2003, 42, 1955.
(p) Ma, S.; Yu, Z. J. Org. Chem. 2003, 68, 6149. (q) Ma, S.; Zhao, S. Org.
Lett. 2000, 2, 2495.
(4) (a) Agnusdei, M.; Bandini, M.; Melloni, A.; Umani-Ronchi, A. J.
Org. Chem. 2003, 68, 7126. (b) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.;
Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066. (c)
Bandini, M.; Melloni, A.; Piccinelli, F.; Sinisi, R.; Tommasi, S.; Umani-
Ronchi, A. J. Am. Chem. Soc. 2006, 128, 1424. (d) Han, X.; Widenhoefer,
R. A. Org. Lett. 2006, 8, 3801. (e) Angeli, M.; Bandini, M.; Garelli, A.;
Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A. Org. Biomol. Chem. 2006,
4, 3291. (f) Liu, C.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126,
10250. (g) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Org. Lett. 2004, 6,
3199. (h) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc.
2005, 127, 8942. (i) Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am.
Chem. Soc. 2004, 126, 3700. (j) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002,
124, 9030. (k) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 8156. (l) Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am.
Chem. Soc. 2007, 129, 1484. (m) Kimura, M.; Futamata, M.; Mukai, R.;
Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 4592. (n) Trost, B. M.; Quancard,
J. J. Am. Chem. Soc. 2006, 128, 6314. (o) Lu, S.-F.; Du, D.-M.; Xu, J.
Org. Lett. 2006, 8, 2115. (p) Liu, C.; Widenhoefer, R. A. Org. Lett. 2007,
9, 1935. (q) Ma, S.; Yu, S. Org. Lett. 2005, 7, 5063. (r) Ma, S.; Yu, S.;
Peng, Z.; Guo, H. J. Org. Chem. 2006, 71, 9865. (s) Zhang, G.; Huang, X.;
Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814.
(6) Crystal data for 3aa: C19H27NO, MW ) 285.43, Monoclinic, space
group P2(1)/c, final R indices [I > 2σ(I)], R1 ) 0.0377, wR2 ) 0.0881, a
) 7.4333(5) Å, b ) 15.8825(13) Å, c ) 15.0972(10) Å, R ) 90°, ꢀ )
106.1198(16)°, γ ) 90°, V ) 1712.3(2) Å3, T ) 296(1) K, Z ) 4, number
of reflections collected/unique: 3868/1300 (Rint ) 0.077), number of
observations [I > 2σ(I)] 3868, parameters: 191. Supplementary crystal-
lographic data have been deposited at the Cambridge Crystallographic Data
Center. CCDC702025.
(7) Pigge, F. C.; Ghasedi, F.; Zheng, Z.; Rath, N. P.; Nichols, G.;
Chickos, J. S. J. Chem. Soc., Perkin Trans. 2 2000, 2458.
(8) Marshall, J. A.; Wang, X.-J. J. Org. Chem. 1991, 56, 4913.
(9) (a) Lai, G.; Anderson, W. K. Synth. Commun. 1995, 25, 4087. (b)
Kimura, M.; Tanaka, S.; Tamaru, Y. Bull. Chem. Soc. Jpn. 1995, 68, 1689.
(c) Ma, S.; Gao, W. J. Org. Chem. 2003, 68, 7126.
(5) Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485.
1214
Org. Lett., Vol. 11, No. 6, 2009