10.1002/anie.201801363
Angewandte Chemie International Edition
COMMUNICATION
To shed light on the reaction mechanism of this
transformation, several experiments were carried out (Scheme
8). Firstly, O18-labelled substrate 1a-O18 was subjected to the
reaction to react with 2a to investigate the oxygen atom source
(Scheme 8a). The mass spectrometry result revealed that the
O18 atom was incorporated into the final product 3aa-O18. As
such, all of the atoms in the two starting materials were
implanted into the target product. Secondly, an isoxazol-5(2H)-
one derivative 1aj was prepared, which reacted with 2a under
the standard reaction conditions to afford the corresponding
product 3aia in 67% yield (Scheme 8b). This observation implied
that the isoxazol-5(2H)-one might be an intermediate in the Ag-
catalyzed pyrimidinedione synthesis. Lastly, the model reaction
of 1a with 2a took place under the standard reaction conditions
Acknowledgements
Financial support from the NSFC (No. 21772231, 21302220),
the Natural Science Foundation of Chongqing (No.
cstc2016jcyjA0008), and the Third Military Medical University is
greatly appreciated.
Keywords: oximes • isocyanides • N-heterocycles • silver •
homogeneous catalysis
[1]
For recent reviews, see: a) A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru,
V. G. Nenajdenko, Chem. Rev. 2010, 110, 5253; b) A. V. Lygin, A. de
Meijere, Angew. Chem. Int. Ed. 2010, 49, 9094; Angew. Chem. 2010,
122, 9280; c) Isocyanide Chemistry: Applications in Synthesis and
Material Science (Ed.: V. G. Nenajdenko), Wiley-VCH, Weinheim,
2012; d) S. Lang, Chem. Soc. Rev. 2013, 42, 4867; e) M. Giustiniano,
A. Basso, V. Mercalli, A. Massarotti, E. Novellino, G. C. Tron, J. Zhu,
Chem. Soc. Rev. 2017, 46, 1295.
in the presence of
2 equiv of BHT (2,6-di-tert-butyl-4-
methylphenol), affording 3aa in 90% yield, which implied that the
Ag-catalyzed difunctionalization of isocyano group probably
does not proceed via a radical process (Scheme 8c).
[2]
[3]
For recent reviews, see: a) A. Dömling, I. Ugi, Angew. Chem. Int. Ed.
2000, 39, 3168; Angew. Chem. 2000, 112, 3300; b) A. Dömling, Chem.
Rev. 2006, 106, 17.
For recent reviews, see: a) G. Qiu, Q. Ding, J. Wu, Chem. Soc. Rev.
2013, 42, 5257; b) T. Vlaar, E. Ruijter, B. U. W. Maes, R. V. A. Orru,
Angew. Chem. Int. Ed. 2013, 52, 7084; Angew. Chem. 2013, 125,
7222; c) B. Zhang, A. Studer, Chem. Soc. Rev. 2015, 44, 3505; d) V. P.
Boyarskiy, N. A. Bokach, K. V. Luzyanin, V. Y. Kukushkin, Chem. Rev.
2015, 115, 2698; e) B. Song, B. Xu, Chem. Soc. Rev. 2017, 46, 1103.
a) Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108,
6405;b) S. Kamijo, C. Kanazawa, Y. Yamamoto, J. Am. Chem. Soc.
2005, 127, 9260; c) C. Guo, M.-X. Xue, M.-K. Zhu, L.-Z. Gong, Angew.
Chem. Int. Ed. 2008, 47, 3414; Angew. Chem. 2008, 120, 3462; d) F.
Sladojevich, A. Trabocchi, A. Guarna, D. J. Dixon, J. Am. Chem. Soc.
2011, 133, 1710; e) J. Liu, Z. Fang, Q. Zhang, Q. Liu, X. Bi, Angew.
Chem. Int. Ed. 2013, 52, 6953; Angew. Chem. 2013, 125, 7091; f) M.
Gao, C. He, H. Chen, R. Bai, B. Cheng, A. Lei, Angew. Chem. Int. Ed.
2013, 52, 6958; Angew. Chem. 2013, 125, 7096; g) P.-L. Shao, J.-Y.
Liao, Y. A. Ho, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 5435; Angew.
Chem. 2014, 126, 5539; h) Z. Hu, J. Dong, Y. Men, Z. Lin, J. Cai, X. Xu,
Angew. Chem. Int. Ed. 2017, 56, 1805; Angew. Chem. 2017, 129,
1831; i) Z. Hu, J. Dong, X. Xu, Adv. Synth. Catal. 2017, 359, 3585.
The isocyano group functionalization here refers to the formation of new
C−X or N−X bonds (X ≠ H).
S. Tong, Q. Wang, M.-X. Wang, J. Zhu, Angew. Chem. Int. Ed. 2015, 54,
1293; Angew. Chem. 2015, 127, 1309.
C.-H. Lei, D.-X. Wang, L. Zhao, J. Zhu, M.-X. Wang, J. Am. Chem. Soc.
2013, 135, 4708.
a) C. Kanazawa, S. Kamijo, Y. Yamamoto, J. Am. Chem. Soc. 2006,
128, 10662; b) B. Pooi, J. Lee, K. Choi, H. Hirao, S. H. Hong, J. Org.
Chem. 2014, 79, 9231; c) H. Wang, R. K. Kumar, Y. Yu, L. Zhang, Z.
Liu, P. Liao, X. Bi, Chem. Asian J. 2016, 11, 2841; d) Z. Hu, H. Yuan, Y.
Men, Q. Liu, J. Zhang, X. Xu, Angew. Chem. Int. Ed. 2016, 55, 6958;
Angew. Chem. 2016, 128, 7193; e) Y. Lei, Z. Hu, J. Dong, J. Liu, X. Xu,
Org. Lett. 2017, 19, 5292.
[4]
Scheme 9. Proposed mechanism.
Although the exact mechanism of this reaction remains
elusive, on the basis of the above observations and the previous
work, a plausible mechanism is illustrated to account for the
unprecedented Ag-catalyzed pyrimidinedione synthesis from
cyclic oximes and isocyanides. As depicted in Scheme 9, the
cyclic oxime 1 may tautomerize to the isoxazol-5(2H)-one 1’[24]
that then reacts with Ag(I) salt by using pyridine as a base to
generate a silver complex A. Subsequent isocyanide insertion
affords an intermediate B, followed by ring opening to give rise
to a silver-nitrene species C.[25] After intramolecular nitrene
insertion into the C−Ag bond,[26] a species D could be delivered,
which then occurs protonation to furnish an imidate E. The
compound E could undergo ring opening[15] to produce a species
F, which is then converted into the desired product 3 through
intramolecular C−N bond formation. Note that another role of the
pyridine might be to enhance the solubility of the silver salt by
virtue of its good coordination ability to the silver salt.[27]
[5]
[6]
[7]
[8]
[9]
a) S. Knapp, Chem. Rev. 1995, 95, 1859; b) K. Grossmann, R.
Niggeweg, N. Christiansen, R. Looser, T. Ehrhardt, Weed Science
2010, 58, 1; c) A. Yoshida,S. Honda, H. Goto, H. Sugimoto, Polym.
Chem. 2014, 5, 1883; d) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J.
L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116,
422.
[10]
Principles of Nucleic Acid Structure (Ed.: W. Saenger), Springer: New
York, 1984.
In summary, we outline an unprecedented silver-catalyzed
difunctionalization of isocyano group with cyclic oximes for the
rapid assembly of pyrimidinediones. Our method exhibits
excellent atom economy, good functional group compatibility
and broad substrate scope; thus, a great majority of structurally
new and interesting pyrimidinediones have been generated.
These molecules might be recognized as privileged scaffolds in
drug discovery, and the realization of concise methods to access
them would be of great interest. The exploration of more new
synthetic strategies involving the difunctionalization of isocyano
group is underway in our group.
[11] a) S. Ozaki, Med. Res. Rev. 1996, 16, 51; b) N. Tanaka, K. Sakamoto,
H. Okabe, A. Fujioka, K. Yamamura, F. Nakagawa, H. Nagase, T.
Yokogawa, K. Oguchi, K. Ishida, A. Osada, H. Kazuno, Y. Yamada, K.
Matsuo, Oncol. Rep. 2014, 32, 2319.
[12] a) S. Agarwal, R. Tadiparthi, P. Aggarwal, S. Shivakumar, US patent
20040009975, 2004; b) F. C. Tucci, Y.-F. Zhu, R. S. Struthers, Z. Guo,
T. D. Gross, M. W. Rowbottom, O. Acevedo, Y. Gao, J. Saunders, Q.
Xie, G. J. Reinhart, X.-J. Liu, N. Ling, A. K. L. Bonneville, T. Chen, H.
Bozigian, C. Chen, J. Med. Chem. 2005, 48, 1169; c) S. Fustero, S.
Catalán, S. Flores, D. Jiménez, C. del Pozo, J. L. Aceña, J. F. Sanz-
Cervera, S. Mérida, QSAR Comb. Sci. 2006, 753; d) C. Chen, D. Wu, Z.
Guo, Q. Xie, G. J.Reinhart, A. Madan, J. Wen, T. Chen, C. Q. Huang, M.
Chen, Y. Chen, F. C. Tucci, M. Rowbottom, J. Pontillo, Y.-F. Zhu, W.
Wade, J. Saunders, H. Bozigian, R. S. Struthers, J. Med. Chem. 2008,
51, 7478; e) J. X. Qiao, C. H. Hu, T. C. Wang, J. Jiang, US patent
20150065505, 2015; f) G. C. Sati, D. Crich, Org. Lett. 2015, 17, 4122.
This article is protected by copyright. All rights reserved.