Journal of the American Chemical Society
Page 4 of 6
Funding Sources
1
2
No competing financial interests have been declared.
3
4
ACKNOWLEDGMENT
We thank N. J. Kramer, R. Wolfenden, C. Neumann and B.
Li for informative discussions. JWB is recipient of an
AFPE pre-doctoral fellowship and a GSK pre-doctoral fel-
lowship. This work was supported by NIH Grant
GM125005 (AAB). AAB is a Beckman Young Investigator
and acknowledges support by Arnold & Mabel Beckman
Foundation.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Diels O.; Alder K. Synthesen in der hydroaromatischen Reihe
Justus Liebigs Ann. Chem. 1928, 460, 98.
(2) Nicolaou, K.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis,
G. The Diels–Alder Reaction in Total Synthesis. Angew. Chem. Int.
Ed. 2002, 41, 1668.
(3) Jamieson, C. S.; Ohashi, M.; Liu, F.; Tang, Y.; Houk, K. The
Expanding World of Biosynthetic Pericyclases: Cooperation of Ex-
periment and Theory for Discovery. Nat. Prod. Rep. 2018, 1, 17.
(4) Jeon, B.; Wang, S.-A.; Ruszczycky, M. W.; Liu, H. Natural [4 +
2]-Cyclases. Chem. Rev. 2017, 117, 5367.
(5) Minami, A.; Oikawa, H. Recent Advances of Diels–Alderases
Involved in Natural Product Biosynthesis. J. Antibiotics 2016, 69,
500.
(6) Klas, K.; Tsukamoto, S.; Sherman, D. H.; Williams, R. M. Natural
Diels–Alderases: Elusive and Irresistable. J. Org. Chem. 2015, 80,
11672.
(7) Zheng, Q.; Guo, Y.; Yang, L.; Zhao, Z.; Wu, Z.; Zhang, H.; Liu,
J.; Cheng, X.; Wu, J.; Yang, H.; et al. Enzyme-Dependent [4 + 2]
Cycloaddition Depends on Lid-like Interaction of the N-Terminal
Sequence with the Catalytic Core in PyrI4. Cell Chem. Biol. 2016, 23,
352.
(8) Fage, C. D.; Isiorho, E. A.; Liu, Y.; Wagner, D. T.; Liu, H.; Keat-
inge-Clay, A. T. The Structure of SpnF, a Standalone Enzyme That
Catalyzes [4 + 2] Cycloaddition. Nat. Chem. Biol. 2015, 11, 256.
(9) Kim, H.; Ruszczycky, M. W.; Choi, S.; Liu, Y.; Liu, H. Enzyme-
Catalysed [4+2] Cycloaddition Is a Key Step in the Biosynthesis of
Spinosyn A. Nature 2011, 473, 109.
(10) Ma, S. M.; Li, J.; Choi, J. W.; Zhou, H.; Lee, M. K.; Moorthie,
V. A.; Xie, X.; Kealey, J. T.; Silva, N. A.; Vederas, J. C.; et al. Com-
plete Reconstitution of a Highly Reducing Iterative Polyketide Syn-
thase. Science 2009, 326, 589.
(11) Auclair, K.; Sutherland, A.; Kennedy, J.; Witter D. J.; Van den
Heever, J. P.; Hutchinson, C. R.; Vederas, J. C. Lovastatin Nonake-
tide Synthase Catalyzes an Intramolecular Diels-Alder Reaction of a
Substrate Analogue. J. Am. Chem. Soc. 2000, 122, 11519.
(12) Arnison, P. G.; Bibb, M. J.; Bierbaum, G.; Bowers, A. A.; Bugni,
T. S.; Bulaj, G.; Camarero, J. A.; Campopiano, D. J.; Challis, G. L.;
Clardy, J.; et al. Ribosomally Synthesized and Post-Translationally
Modified Peptide Natural Products: Overview and Recommendations
for a Universal Nomenclature. Nat. Prod. Rep. 2012, 30, 108.
(13) Brown, L. C.; Acker, M. G.; Clardy, J.; Walsh, C. T.; Fischbach,
M. A. Thirteen Posttranslational Modifications Convert a 14-Residue
Peptide into the Antibiotic Thiocillin. Proc. Natl. Acad. Sci. USA
2009, 106, 2549.
(14) Hudson, G. A.; Zhang, Z.; Tietz, J. I.; Mitchell, D. A.; van der
Donk, W. A. In Vitro Biosynthesis of the Core Scaffold of the Thio-
peptide Thiomuracin. J. Am. Chem. Soc. 2015, 137, 16012.
(15) Wever, W. J.; Bogart, J. W.; Baccile, J. A.; Chan, A. N.;
Schroeder, F. C.; Bowers, A. A. Chemoenzymatic Synthesis of Thia-
zolyl Peptide Natural Products Featuring an Enzyme-Catalyzed For-
mal [4 + 2] Cycloaddition. J. Am. Chem. Soc. 2015, 137, 3494.
(16) Zhang, Z.; Hudson, G. A.; Mahanta, N.; Tietz, J. I.; van der
Donk, W. A.; Mitchell, D. A. Biosynthetic Timing and Substrate
Specificity for the Thiopeptide Thiomuracin. J. Am. Chem. Soc. 2016,
138, 15511.
Figure 4. Substrate scope of the intermolecular reaction.
(a) Consistent with intramolecular substrate 4, a 15-residue
LP was used for all 2π components. Compound numbers
for 2π and 4πs components are listed next to each sequence.
See SI for calculations regarding percent conversion and
kobs. (b) Green circles represent permissible changes (S for
thiazoles, O for oxazoles). Removing residues with red
triangles prevents cyclization.
In conclusion, we found that the thiomuracin pyridine
synthase TbtD is capable of catalyzing an intermolecular
pyridine formation in addition to its cognate intramolecular
reaction. The intermolecular reaction proved possible only
under rate-enhancing alkaline conditions, which allow an
approximate 10-fold increase in enzyme turnover (kcat)
while minimally affecting substrate binding (Kd). The
thiocillin pyridine synthase, TclM, observed similar base-
catalyzed rate-enhancement but could not perform an
intermolecular reaction, suggesting that different families
of pyridine synthases may have distinct substrate
requirements. The intermolecular chemistry of TbtD
provides evidence that pyridine synthases use a two-site
model to engage and process their precursor peptides; this
reaction is a strong indicator of this enzyme family’s broad
promiscuity, suggesting that their use as biocatalysts could
be extended beyond natural thiopeptide scaffolds, to allow
larger ring sizes, incorporation of non-natural functionality
or even novel linear substrates. The intermolecular
reaction may be of use in elucidating the mechanism of
these enzymes and may provide a barometer for evaluating
new pyridine synthases for biotechnology applications.
ASSOCIATED CONTENT
Experimental details, synthetic schemes, figures available
AUTHOR INFORMATION
Corresponding Author
(17) Mocek, U.; Knaggs, A. R.; Tsuchiya, R.; Nguyen T.; Beale, J.
M.; Floss, H. G. Biosynthesis of the Modified Peptide Antibiotic
ACS Paragon Plus Environment