726
L. Zhang
Letter
Synlett
easily obtained by formic acid mediated hydrolysis of its di-
ethyl acetal 3a,13 and is an especially useful building blocks
for cycloaddition reactions. Interestingly, with K3PO4 as the
basic additive, 3a underwent efficient reduction by the
diimide generated from 2-nitrobenzenesulfonyl hydrazide
(NBSH) at room temperature14 to give 2-phenylpropional
diethyl acetal 5 in 95% yield. Furthermore, 3a could be
cleaved to give 2,2-diethoxy-1-phenylethanone 6 (61%
yield) by treatment with RuCl3·xH2O catalyst in the pres-
ence of NaIO4 and Bu4NBr under aqueous conditions.15
References and Notes
(1) (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979,
3437. (b) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun.
1979, 866.
(2) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(3) For selected reviews, see: (a) Campeau, L.-C.; Hazari, N. Organo-
metallics 2019, 38, 3. (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem.
Soc. Rev. 2014, 43, 412. (c) Johansson Seechurn, C. C. C.;
Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed.
2012, 51, 5062. (d) So, C. M.; Kwong, F. Y. Chem. Soc. Rev. 2011,
40, 4963.
(4) For a review, see: Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.
Chem. Int. Ed. 2005, 44, 4442.
CHO
HCO2H/H2O (v/v = 3:2)
(5) (a) Ferraboschi, P.; Reza-Elahi, S.; Verza, E.; Santaniello, E. Tetra-
hedron: Asymmetry 1999, 10, 2639. (b) Coates, R. M.; Hobbs, S. J.
J. Org. Chem. 1984, 49, 140. (c) Kagabu, S.; Mizoguchi, S. Synthe-
sis 1996, 372.
0 °C to rt, 40 min
4, 74%
CH(OEt)2
NBSH (2.0 equiv)
K3PO4 (1.0 equiv)
CH(OEt)2
(6) (a) Bailey, W. F.; Reed, D. P.; Clark, D. R.; Kapur, G. N. Org. Lett.
2001, 3, 1865. (b) Zhang, Q.; Zhu, S.-F.; Qiao, X.-C.; Wang, L.-X.;
Zhou, Q.-L. Adv. Synth. Catal. 2008, 350, 1507. (c) Gu, Y.; Wu, F.;
Yang, J. Adv. Synth. Catal. 2018, 360, 2727.
(7) (a) Crossland, I. Org. Synth. 1981, 60, 6. (b) Song, Q.-W.; Yu, B.;
Liu, A.-H.; He, Y.; Yang, Z.-Z.; Diao, Z.-F.; Song, Q.-C.; Li, X.-D.;
He, L.-N. RSC Adv. 2013, 3, 19009.
MeCN (0.15 M)
rt, 12 h
3a
5, 95%
RuCl3 xH2O (5 mol%)
NaIO4 (5.0 equiv)
CH(OEt)2
O
Bu4NBr (0.1 equiv)
H2O (0.1 M), rt, 1 h
6, 61%
(8) Cacchi, S.; Fabrizi, G.; Moro, L.; Pace, P. Synlett 1997, 1367.
(9) Kang, S.-K.; Ha, Y.-H.; Yang, H.-Y. J. Chem. Res., Synop. 2002, 282.
(10) Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Angew. Chem. Int. Ed. 2012,
51, 5915.
Scheme 5 Further transformations of the coupled product 3a
In summary, a general protocol has been developed for
the synthesis of -substituted alkenyl acetals through Suzuki
coupling of -haloalkenyl acetals with various organobo-
ranes.16 This protocol features a broad substrate scope, ex-
cellent functional-group compatibility, and easy scaleup.
Furthermore, the terminal vinyl acetals can be subjected to
various transformations. This method should contribute to
modular preparations of -substituted alkenyl acetals.
Studies on the application of this method to similar Suzuki
reactions of other Michael acceptors are ongoing.
(11) (a) Zhang, L.; Fang, Y.; Jin, X.; Guo, T.; Li, R.; Li, Y.; Li, X.; Ye, Q.;
Luo, X.; Tian, Z. Org. Chem. Front. 2018, 5, 1457. (b) Zhang, L.;
Fang, Y.; Jin, X.; Xu, H.; Li, R.; Wu, H.; Chen, B.; Zhu, Y.; Yang, Y.;
Tian, Z. Org. Biomol. Chem. 2017, 15, 8985. (c) Fang, Y.; Zhang, L.;
Jin, X.; Li, J.; Yuan, M.; Li, R.; Wang, T.; Wang, T.; Hu, H.; Gu, J.
Eur. J. Org. Chem. 2016, 1577. (d) Fang, Y.; Zhang, L.; Li, J.; Jin, X.;
Yuan, M.; Li, R.; Wu, R.; Fang, J. Org. Lett. 2015, 17, 798. (e) Fang,
Y.; Zhang, L.; Jin, X.; Li, J.; Yuan, M.; Li, R.; Gao, H.; Fang, J.; Liu, Y.
Synlett 2015, 26, 980. (f) Yuan, M.; Fang, Y.; Zhang, L.; Jin, X.;
Tao, M.; Ye, Q.; Li, R.; Li, J.; Zheng, H.; Gu, J. Chin. J. Chem. 2015,
33, 1119. (g) Fang, Y.; Yuan, M.; Zhang, J.; Zhang, L.; Jin, X.; Li, R.;
Li, J. Tetrahedron Lett. 2016, 57, 1460.
(12) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(13) Jiang, M.; Feng, L.; Feng, J.; Jiao, P. Org. Lett. 2017, 19, 2210.
(14) (a) Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997,
62, 7507. (b) Fang, Y.; Yuan, M.; Jin, X.; Zhang, L.; Li, R.; Yang, S.;
Fang, M. Tetrahedron Lett. 2016, 57, 1368.
Funding Information
This work was supported by the Ningbo Natural Science Foundation
of China (No. 2019A610203).
N
a
turalSc
i
e
nc
e
F
o
u
n
d
a
ti
o
n
o
f
N
i
n
g
b
o
(2
0
1
9
A
6
1
0
2
0
3
)
(15) (a) Tabatabaeian, K.; Mamaghani, M.; Mahmoodi, N. O.;
Khorshidi, A. Catal. Commun. 2008, 9, 416. (b) Joarder, D. D.;
Gayen, S.; Sarkar, R.; Bhattacharya, R.; Roy, S.; Maiti, D. K. J. Org.
Chem. 2019, 84, 8468.
(16) (3,3-Diethoxyprop-1-en-2-yl)benzene (3a): Typical Proce-
dure
Acknowledgment
Many thanks to Professor Yewen Fang at the Ningbo University of
Technology for his generous support and valuable suggestions.
A Schlenk tube equipped with a magnetic stirrer bar was
charged with Pd(OAc)2 (0.9 mg, 0.004 mmol, 2 mol%), XPhos
(3.8 mg, 0.008 mmol, 4 mol%), Cs2CO3 (163 mg, 0.5 mmol, 2.5
equiv), and PhB(OH)2 (2a; 48.8 mg, 0.4 mmol, 2 equiv). The tube
was then sealed with a cap and degassed by alternating vacuum
evacuation and N2 backfill. A 0.2 M solution of 2-bromo-3,3-
diethoxyprop-1-ene (1a; 41.6 mg, 0.2 mmol) in 1,4-dioxane (1
mL) was added to the tube under nitrogen, and the mixture was
stirred at 40 °C for 3 h. When the reaction was complete (TLC),
the mixture was cooled to r.t., diluted with EtOAc (2 mL), and
pushed through a plug of silica gel with EtOAc. The filtrate was
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
n
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
n
© 2020. Thieme. All rights reserved. Synlett 2021, 32, 723–727