P. Lo´pez-Alvarado et al. / Tetrahedron 65 (2009) 1660–1672
1671
at ꢀ78 ꢁC and under an argon atmosphere, was added trime-
124.5 (C-3a0); 108.6 (C-70); 74.9 (CH2NO2); 60.2 (C-30); 33.2 (C-3);
28.9 (C-2); 29.3 (NOCH3); 25.3 (2NCH3) ppm.
thylsilyl chloride (24 ml, 0.19 mmol). The reaction was left to warm
to room temperature and the reaction mixture was stirred for 7 h
at this temperature. The reaction was then poured 10% aqueous
sodium thiosulfate and extracted with diethyl ether (3ꢂ10 ml),
and then with CH2Cl2 (3ꢂ10 ml). The combined ether layers were
dried over anhydrous Na2SO4 and evaporated, affording 8 mg
(48%) of alcohol 40. Similarly, evaporation of the CH2Cl2 extracts
afforded 11 mg (46%) of iodide 41, as a yellow solid with the
following characterization data: mp 143 ꢁC. IR (NaCl): 1790.3
0
d 7.27
Acknowledgements
We thank MEC (grant CTQ2006-10930), UCM-CAM (Grupos de
´
Investigacion, grant 920234) and CAM (predoctoral fellowship to
S.M.) for financial support. The stay of J.S. in Madrid was funded by
an Erasmus fellowship, which is also gratefully acknowledged. We
also thank Lucia Dicorato for assistance with some experiments
related to the mechanistic studies.
(C1]O), 1727.2 (C2 ]O), 1159.8 (C–O) cmꢀ1. 1H NMR (CDCl3)
(t, 1H, J¼7.9 Hz, H-60); 7.02 (d, 1H, J¼7.9 Hz, H-50); 6.67 (d, 1H,
J¼7.8 Hz, H-70); 4.47 (d, 1H, J¼10.2 Hz, CH2I); 4.30 (d, 1H,
J¼10.2 Hz, CH2I); 3.20–3.13 (m, 1H); 3.08 (s, 3H, NCH3); 2.99–2.86
(m, 1H); 2.80–2.73 (m, 1H); 2.49–2.40 (m, 1H) (H-2,3) ppm. 13C
Supplementary data
Supplementary data associated with this article can be found in
NMR (CDCl3)
d
177.2 (C-1); 175.6 (C-20); 143.4 (C-7a0); 139.0
(C-40); 132.9 (C-60); 127.3 (C-50); 124.2 (C-3a0); 109.7 (C-70); 84.1
(C-30); 29.6 (C-2); 28.9 (C-3); 27.8 (NCH3); 0.00 (CH2I) ppm. Anal.
Calcd for C13H12INO3: C, 43.72; H, 3.39; N, 3.92. Found: C, 43.40;
H, 3.73; N, 3.61.
References and notes
1. For a review of the Swern oxidation, see: Tidwell, T. T. Synthesis 1990, 857.
2. Bailey, P. D.; Cochrane, P. J.; Irvine, F.; Morgan, K. M.; Pearson, D. P. J.; Veal, K. T.
Tetrahedron Lett. 1999, 40, 4593.
3. For a preliminary communication dealing with the synthesis of compounds 9a–h,
see: Lo´pez-Alvarado, P.; Steinhoff, J.; Miranda, S.; Avendan˜o, C.; Mene´ndez, J. C.
Synlett 2007, 2792.
4. For representative examples, see: (a) Szabo-Pusztay, K.; Szabo, L. Synthesis
1979, 276; (b) Underwood, R.; Prasad, K.; Repic, O.; Hardtmann, G. Synth.
Commun. 1992, 22, 343; (c) Cushing, T. D.; Sanz-Cervera, J. F.; Williams, R. M. J.
Am. Chem. Soc. 1993, 115, 9323. For a review of the synthesis of 2-oxindoles, see:
(d) Karp, G. M. Org. Prep. Proced. Int. 1993, 25, 481.
5. For early surveys of oxindole alkaloids, see: (a) Cordell, G. A. An Introduction to
Alkaloids: A Biogenetic Approach; Wiley-Interscience: New York, NY, 1981; (b)
Bindra, J. S. In Oxindole Alkaloids; Manske, R. H. F., Ed.; The Alkaloids-Chemistry
and Physiology; Academic: New York, NY, 1973; Vol. 14, p 83.
6. Abourriche, A.; Abboud, Y.; Maoufoud, S.; Mohou, H.; Seffaj, T.; Charrouf, M.;
Chaib, N.; Benamara, A.; Bontemps, N.; Francisco, C. Farmaco 2003, 58, 1351.
7. (a) Isolation: Cui, C. B.; Kakeya, H.; Okada, G.; Onose, R.; Osada, H. J. Antibiot.
1996, 49, 527; (b) Structure: Cui, C.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52,
12651; (c) Cytotoxic activity: Edmondson, S. E.; Danishefsky, S. J.; Sepp-Lor-
enzino, L.; Rosen, N. J. Am. Chem. Soc. 1999, 121, 2147.
8. Tsuda, M.; Mugishima, T.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Shiro,
M.; Hirai, M.; Ohizumie, Y.; Kobayashi, J. Tetrahedron 2003, 59, 3227.
9. (a) Smith, C. D.; Zilfou, J. T.; Stratmann, K.; Patterson, G. M. L.; Moore, R. E. Mol.
Pharmacol. 1995, 47, 241; (b) Zhang, X.; Smith, C. D. Mol. Pharmacol. 1996, 49,
288.
10. For reviews of the chemistry of the welwitindolinones, see: (a) Avendan˜o, C.;
Mene´ndez, J. C. Curr. Org. Synth. 2004, 1, 65; (b) Mene´ndez, J. C. In Bioactive
Heterocycles V; Khan, M. T. H., Ed.; Topics in Heterocyclic Chemistry; Springer:
Berlin, Heidelberg, 2007; Vol. 11, p 63.
11. Tokunaga, T.; Hume, W. E.; Nagamine, J.; Kawamura, T.; Taiji, M.; Nagata, R.
Bioorg. Med. Chem. Lett. 2005, 15, 1789.
4.8.6. 3-[30-Hydroxy-10-methyl-40-nitromethyl-20-oxoindolin-30-
yl]propanoic acid lactone (42)
A mixture of sodium nitrite (48 mg, 0.69 mmol) and urea
(53 mg, 0.88 mmol), pre-dried in an oven at 90 ꢁC for 24 h, was
dissolved in dry dimethylformamide (4 ml), which required
a slight heating. To this solution, cooled to ꢀ38 ꢁC, was dropwise
added a solution of iodide 41 (142 mg, 0.40 mmol) in dry dime-
thylformamide (3 ml). The reaction mixture was stirred at ꢀ20 ꢁC
for 2 h, poured on water (10 ml) and with ethyl acetate (3ꢂ10 ml).
The combined organic layers were dried over anhydrous Na2SO4
and evaporated. The residue was chromatographed on silica gel,
eluting with
a 8:1 petroleum ether–ethyl acetate mixture,
affording 56 mg (60%) of nitro compound 42 and 19 mg (18%) of
alcohol 40, both as pale yellow oils. Characterization data for 42:
0
IR (NaCl): 1791.3 (C1]O), 1726.8 (C2 ]O), 1557.5 and 1373.1 (NO2),
1159.8 (C–O) cmꢀ1
.
1H NMR (CDCl3)
d
7.50 (t, 1H, J¼7.5 Hz, H-60);
7.23 (d, 1H, J¼7.5 Hz, H-50); 6.95 (d, 1H, J¼7.5 Hz, H-70); 5.57 (d, 1H,
J¼12.5 Hz, CH2NO2); 5.45 (d, 1H, J¼12.5 Hz, CH2NO2); 3.30–3.22
(m, 1H); 3.22 (s, 3H, NCH3); 2.86–2.58 (m, 3H) (H-2,3) ppm. 13C
NMR (CDCl3)
d
176.0 (C-1); 174.6 (C-20); 144.9 (C-7a0); 132.3 (C-60);
127.7 (C-40); 126.3 (C-50); 125.7 (C-3a0); 110.9 (C-70); 82.8 (C-30);
75.5 (CH2NO2); 31.7 (C-2); 27.7 (C-3); 27.0 (NCH3) ppm. Anal. Calcd
for C13H12N2O5: C, 56.52; H, 4.38; N, 10.14. Found: C, 56.23; H,
4.02; N, 9.87.
12. Zaveri, N. T.; Jiang, F.; Olsen, C. M.; Deschamps, J. R.; Parrish, D.; Polgar, W.; Toll,
L. J. Med. Chem. 2004, 47, 2973.
13. Alcaraz, M.; Atkinson, S.; Cornwall, P.; Foster, A. C.; Gill, D. M.; Humphries, L. A.;
Keegan, P. S.; Kemp, R.; Merifield, E.; Nixon, R. A.; Noble, A. J.; O’Beirne, D.;
Patel, Z. M.; Perkins, J.; Rowa, P.; Sadler, P.; Singleton, J. T.; Tornos, J.; Watts, A. J.;
Woodland, I. A. Org. Process Res. Dev. 2005, 9, 555.
14. Kikuchi, C.; Hiranuma, T.; Koyama, M. Bioorg. Med. Chem. Lett. 2002, 12, 2549.
15. Gallagher, G.; Lavanchi, P. G.; Wilson, J. W.; Hieble, J. P.; DeMarinis, R. M. J. Med.
Chem. 1985, 28, 1533.
16. Miranda, S.; Avendan˜o, C.; Mene´ndez, J. C. Open Org. Chem. J. 2007, 1, 1.
17. Some compounds 7 have been described in the literature: (a) Compound 7e:
Novikov, A. V.; Sabahi, A.; Nyong, A. M.; Rainier, J. D. Tetrahedron: Asymmetry
2003, 14, 911; (b) Compound 7g: Francis, P.; Smith, I.; Finnie, M. D. A. Biomed.
Mass Spectrom. 1980, 7, 294.
4.8.7. 3-(30-Hydroxy-10-methyl-40-nitromethyl-20-oxoindolin-30-
yl)-N-methyl-N-methoxypropanamide (43)
To a stirred suspension of N-methoxy-N-methylamine hydro-
chloride (25 mg, 0.26 mmol) in dry CH2Cl2 (8 ml), at 0 ꢁC and under
an argon atmosphere, was added a 1 M dimethylaluminium chloride
solution in hexanes (260 ml, 0.26 mmol). The reaction mixture left to
warm toroomtemperatureover1 h, while stirred. A solution ofnitro
lactone 42 (24 mg, 0.087 mmol) in dry CH2Cl2 (4 ml) was added and
stirring at 0 ꢁC was maintained for 4 h. The reaction mixture was
then poured onto pH 8 aqueous buffer (0.78 ml, 0.26 mmol) and was
filtered through Celite, which was washed with CHCl3. The com-
bined organic layers were dried over anhydrous Na2SO4 and evap-
orated, yielding 21 mg (75%) of Weinreb amide 43, as a pale yellow
oil. IR (NaCl): 1731.6 (C]O), 1557.2 and 1373.5 (NO2), 1260.3 (C–
18. Harrington, P. E.; Kerr, M. A. Synlett 1996, 1047.
19. Some compounds 8 have been described in the literature: (a) Compound 8c:
Harrington, P. E.; Kerr, M. A. Can. J. Chem. 1998, 76, 1256; (b) Compound 8e:
Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A. J. Org. Chem. 2003,
68, 4594; (c) Compound 8f: Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Chem.dEur. J.
2004, 10, 484; (d) Compound 8h: Yadav, J. S.; Abraham, S.; Reddy, B. V. S.;
Sabitha, G. Synthesis 2001, 2165.
20. Wuest, F. R.; Kniess, T. J. Labelled Compd. Radiopharm. 2005, 48, 31.
21. The N-demethyl analogue of compound 9a has been previously obtained in 7%
yield by treatment of the corresponding alcohol with NCS in CH2Cl2 followed by
addition of aqueous NH4Cl. See: (a) Hino, T.; Miura, H.; Nakagawa, T.; Murata,
R.; Nakagawa, M. Heterocycles 1975, 3, 805; (b) Hino, T.; Miura, H.; Murata, R.;
Nakagawa, M. Chem. Pharm. Bull. 1978, 26, 3695.
O) cmꢀ1. 1H NMR (CDCl3)
d
7.37 (t, 1H, J¼7.5 Hz, H-60); 7.12 (d, 1H,
J¼7.5 Hz, H-50); 6.87 (d, 1H, J¼7.5 Hz, H-70); 6.01 (d, 1H, J¼12.5 Hz,
CH2NO2); 5.61 (d,1H, J¼12.5 Hz, CH2NO2); 3.69 (s, 3H, NOCH3); 3.21
(s, 3H, NCH3); 3.19 (s, 3H, NCH3); 3.10–2.95 (m, 1H); 2.50–2.40 (m,
1H); 2.10–1.95 (m, 2H) (H-2,3) ppm. 13C NMR (CDCl3)
173.6 (C-20); 134.7 (C-7a0); 129.0 (C-60); 126.0 (C-40); 124.5 (C-50);
d
176.5 (C-1);
22. For selected reviews and monographs on multicomponent reactions, see: (a)
Do¨mling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168; (b) Bienayme´, H.;