1022
Y. Liang et al. / Tetrahedron Letters 50 (2009) 1020–1022
Table 3
Acknowledgments
Investigation of steric and electronic effects
We thank Krystle T. Clarke (Houston-Tillotson University) and
R1
R1
4
Laura Allen (Ohio Northern University) for conducting preliminary
experiments. Helpful discussions with Bob Grubbs and Martha
Morton are also acknowledged.
NR
NR
2, 2 mol % x 5
CH2Cl2, reflux
O
O
10, R = Boc, R1 = Me
Supplementary data
5, R = Bn, R1 = H
11, R = Bn, R1 = H
The supplementary data include detailed experimental proce-
dures, characterization data, and 1H and 13C spectra for previously
unreported compounds. Supplementary data associated with this
Entry
R
R1
Catalyst loading
Yield (%)
E:Za
1
2
Boc
Bn
Me
H
2 mol % ꢀ 3
2 mol % ꢀ 5
NR
74
—
1:1.2
a
Determined by 1H NMR.
high E-selectivity.6b However, we found that, under similar condi-
tions and with 1-pentene as a cross-partner, enone 13 did not react
at all. The result was the same with extended reaction times and
higher catalyst loading with either 1 or 2. Sensitivity to steric ef-
fects is further illustrated by the failure of amide 14 to undergo
CM with disubstituted terminal olefin 3-methylbut-3-enyl acetate
(see alkene for entry 2, Table 2) in the presence of either catalyst 1
or 2, even with high catalyst loading and extended reaction time.
References and notes
1. For recent reviews, see: (a) Sandanayaka, V. P.; Prashad, A. S. Curr. Med. Chem.
2002, 9, 1145; (b) Buynak, J. D. Curr. Med. Chem. 2004, 11, 1951 and references
therein.
2. (a) Buynak, J. D.; Rao, M. N.; Pajouhesh, H.; Chandrasekaran, R. Y.; Finn, K.; de
Meester, P.; Chu, S. C. J. Org. Chem. 1985, 50, 4245; (b) Brickner, S. J.; Gaikema, J.
J.; Greenfield, L. J.; Zurenko, G. E.; Manninen, P. R. Bioorg. Med. Chem. Lett. 1993,
3, 2241; (c) Di Giacomo, B.; Tarzia, G.; Bedini, A.; Gatti, G.; Bartoccini, F.;
Balsamini, C.; Tontini, A.; Baffone, W.; Di Modugno, E.; Felici, A. Farmaco 2002,
57, 273.
3. (a) Saalfrank, R. W.; Paul, W.; Liebenow, H. Angew. Chem. 1980, 92, 740; (b)
Manhas, M. S.; Wagle, D. R.; Chiang, J.; Bose, A. K. Heterocycles 1988, 27,
1755; (c) Adam, W.; Groer, P.; Humpf, H.-U.; Saha-Moller, C. R. J. Org. Chem.
2000, 65, 4919; (d) Hitchcock, P. B.; Papadopoulos, K.; Young, D. W. Org.
Biomol. Chem. 2003, 1, 2670; (e) Basak, A.; Ghosh, S. C. Synlett 2004, 1637;
(f) De Vitis, L.; Troisi, L.; Granito, C.; Pindinelli, E.; Ronzini, L. Eur. J. Org.
Chem. 2007, 2, 356.
4. For recent reviews on cross metathesis, see: (a) Connor, S. J.; Blechert, S. Angew.
Chem., Int. Ed. 2003, 42, 1900; (b) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.;
Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360; (c) Grubbs, R. H. Tetrahedron
2004, 60, 7117; (d) Netscher, T. J. Organomet. Chem. 2006, 691, 5155.
5. Raju, R.; Howell, A. R. Org. Lett. 2006, 8, 2139.
The broad CM reactivity of
a-methylene-b-lactones and -lactams
in contrast to the limited reactivity of 1,1-disubstituted enoates
and enamides suggests that these strained heterocycles could find
utility as masked enoates and enamides.
CO2CH3
12
In conclusion, it has been shown that
CO2CH3
CONH2
14
-methylene-b-lactams
13
a
6. (a) Chatterjee, A. K.; Grubbs, R. H. Org. Lett. 1999, 1, 1751; (b) Chatterjee, A. K.;
Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783; (c)
Engelhardt, F. C.; Schmitt, M. J.; Taylor, R. E. Org. Lett. 2001, 3, 2209.
7. E/Z isomeric ratio was determined by 1H NMR. Resonances for the exocyclic
alkene proton, for all b-lactam cross products, were consistent with our NOE
undergo efficient CM reactions. Notably, for the first time, the
application of CM to the formation of tetrasubstituted alkenes
has been demonstrated. The observation that electron-poor
lactams exhibit superior reactivity to electron-rich lactams is
consistent with the CM reactivity profile of monosubstituted
based E/Z assignments of a-alkylidene-b-lactones.
8. (a) Yao, Q.; Zhang, Y. J. Am. Chem. Soc. 2004, 126, 74; (b) Michrowska, A.; Bujok,
R.; Harutyunyan, S.; Sashuk, V.; Grela, K. J. Am. Chem. Soc. 2004, 126, 9318; (c)
Wallace, D. J. Angew. Chem., Int. Ed. 2005, 44, 1912; (d) Nosse, B.; Schall, A.;
Jeong, W. B.; Reiser, O. Adv. Synth. Catal. 2005, 347, 1869; (e) Berlin, J. M.;
Campbell, K.; Ritter, T.; Funk, T. W.; Chlenov, A.; Grubbs, R. H. Org. Lett. 2007, 9,
1339; (f) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.;
Schrodi, Y. Org. Lett. 2007, 9, 1589.
9. Interestingly, during the silica gel chromatographic purification of entry 4
(Table 2), there was significant isomerization of the exocyclic alkenes to the
corresponding a,b-unsaturated esters (see Supplementary data).
10. (a) Courchay, F. C.; Baughman, T. W.; Wagener, K. B. J. Organomet. Chem.
a
,b-unsaturated amides.11 Interestingly, C-4 unsubstituted lactams
3-7 do not undergo CM with substantial E-selectivity. However,
substitution at C-4 (substrate 8) led to Z-selectivity without dimin-
ished reactivity for the
with the CM of -methylene-b-lactones. The impact of allylic
branching on CM reactivity has also been illustrated. Overall,
-methylene-b-lactones and -lactams are excellent substrates for
a-methylene-b-lactam, which is consistent
a
a
CM reactions, and they can be viewed as masked 1,1-disubstituted
enoates and enamides, which have very limited or nonexistent CM
reactivity. Our results also suggest that steric factors play a domi-
nant role in both stereoselectivity and feasibility of CM reactions.
2006, 691, 585; (b) Stewart, I. C.; Douglas, C. J.; Grubbs, R. H. Org. Lett. 2008,
10, 441.
11. Choi, T.-L.; Chatterjee, A. K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2001, 40,
1277.