SCHEME 1.
Bromination of 4-((3-Fluorophenyl)ethynyl)-
Efficient and Regioselective Halogenations of
2-Amino-1,3-thiazoles with Copper Salts
thiazol-2-amine (1) under Sandmeyer Conditions
Fabrice G. Sime´on,* Matthew T. Wendahl, and
Victor W. Pike
Molecular Imaging Branch, National Institute of Mental
Health, National Institutes of Health, Building 10, Room
B3C346A, 10 Center DriVe, Bethesda, Maryland 20892-1003
ReceiVed December 23, 2008
Dibromo-1,3-thiazole has also been produced under harsher
conditions with phosphorus oxybromide.6 Although these
procedures give access to a variety of halo-1,3-thiazoles, only
a limited number are commercially available. Moreover, these
methods have seldom shown applicability to the syntheses of
more complex thiazole-containing molecules bearing further
functional groups. In the course of our research to produce new
improved radioligands for the molecular imaging of brain
mGluR5 in vivo with positron emission tomography (PET),7
we aimed to synthesize new 2-halo-1,3-thiazole derivatives with
various appendages in position 4. One such compound, the
2-bromo-1,3-thiazole derivative (2), had previously been ob-
tained in high yield from compound 1, copper(II) bromide, and
tert-butyl nitrite under Sandmeyer conditions (Scheme 1).8
Surprisingly, in our hands, this reaction led predominantly
to the 2,5-dibromo adduct 3 with the targeted monobromo
compound 2 as minor product (Scheme 1). Classically, the
Sandmeyer reaction involves diazotization of an arylamine
followed by reaction of the formed diazonium salt with
copper(II) halide (CuX2, X ) Cl, Br, or I). Although good yields
of haloarenes are generally obtained, this procedure is usually
complicated by numerous competing side reactions. The scope
and limitations of the Sandmeyer reaction have been widely
investigated with various arenes,9 but little was previously
known about this reaction for the halogenation of 2-amino-1,3-
thiazoles.
Monohalo and dihalo 1,3-thiazole derivatives can be ef-
ficiently and selectively prepared under mild conditions from
2-amino-1,3-thiazoles. Halogenations proceed easily in the
presence of copper(I) or copper(II) chlorides, bromides, or
iodides directly in solution or with supported copper halides.
1,3-Thiazole rings appear in many compounds that exhibit
important biological and pharmacological activities. For ex-
ample, these rings feature in all the potent
epothilones1used against multidrug-resistant tumor cell lines.
They are also found among pharmaceuticals for the treatment
of type 2 diabetes,2 antibiotic-like compounds,3 and metabo-
tropic glutamate receptor subtype 5 (mGluR5) antagonists.4
1,3-Thiazole rings are usually introduced into target molecules
by use of a monohalo thiazole in an organometal-catalyzed
coupling procedure (e.g., a Sonogashira, Heck, or Suzuki
reaction). Traditionally, the required monohalo thiazoles have
been synthesized from 1,3-thiazole or 2-bromo-1,3-thiazole in
two or three steps via stannyl or silyl intermediates.5 2,4-
To investigate the reasons for the formation of the dibromo
compound 3 from 1, we synthesized the des-fluoro analogue 4
and used it as a model in bromination reactions conducted with
CuBr2 and n-butyl nitrite in acetonitrile (Scheme 2).
The effects of order and method of addition of reagents, the
temperature, and the nitrite to copper bromide mole ratio on
the yield of the dibromo compound 6b were investigated.
(5) (a) Dondoni, A; Mastellari, A. R.; Medici, A.; Negrini, E.; Pedrini, P.
Synthesis 1986, 9, 757. (b) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.;
Pedrini, P. J. Org. Chem. 1988, 53, 1748.
(1) Nicolaou, K. C.; King, N. P.; Finlay, M. R. V.; He, Y.; Roschangar, F.;
Vourloumis, D.; Vallberg, H.; Sarabia, F.; Ninkovic, S.; Hepworth, D. Bioorg.
Med. Chem. 1999, 7, 665.
(6) (a) Stanetty, P.; Schnuerch, M.; Mihovilovic, M. D. J. Org. Chem. 2006,
71, 3754. (b) Le Flohic, A.; Meyer, C.; Cossy, J. Tetrahedron 2006, 62, 9017.
(7) (a) Sime´on, F. G.; Brown, A. K.; Zoghbi, S. S.; Patterson, V. M.; Innis,
R. B.; Pike, V. W. J. Med. Chem. 2007, 50, 3256. (b) Brown, A. K.; Kimura,
Y.; Zoghbi, S. S.; Sime´on, F. G.; Liow, J.-S.; Kreisl, W. C.; Taku, A.; Fujita,
M.; Pike, V. W.; Innis, R. B. J. Nucl. Med. 2008, 49, 2042. (c) Shetty, H. U.;
Zoghbi, S. S.; Sime´on, F. G.; Liow, J. S.; Brown, A. K.; Kannan, P.; Innis,
R. B.; Pike, V. W. J. Pharmacol. Exp. Ther. 2008, 327, 727.
(8) Iso, Y.; Grajkowska, E.; Wroblewski, J. T.; Davis, J.; Goeders, N. E.;
Johnson, K. M.; Sanker, S.; Roth, B. L.; Tueckmantel, W.; Kozikowski, A. P.
J. Med. Chem. 2006, 49, 1080.
(9) (a) Doyle, M. P.; Siegfried, B.; Dellaria, J. F. J. Org. Chem. 1977, 42,
2426. (b) Kochi, J. K. J. Am. Chem. Soc. 1957, 79, 2942.
(2) Fyfe, F. M. C. T.; Gardner, L. S.; Nawano, M.; Procter, J. M.; Rasamison,
C. M.; Shofield, K. L.; Shah, V. K.; Yasuda, K. PCT Int. Appl. WO 2004/
072031, 26 August 2004; Chem. Abstr. 2004, 141, 225496.
(3) Kelly, T. R.; Lang, F. Tetrahedron Lett. 1995, 36, 5319.
(4) (a) Cosford, N. D. P.; Tehrani, L.; Roppe, J.; Schweiger, E.; Smith, N. D.;
Anderson, J. J.; Bristow, L.; Brodkin, J.; Jiang, X. H.; McDonald, I.; Rao, S.;
Washburn, M.; Varney, M. A. J. Med. Chem. 2003, 46, 204. (b) Hamill, T. G.;
Krause, S.; Ryan, C.; Bonnefous, C.; Govek, S.; Seiders, T. J.; Cosford, N. D. P.;
Roppe, J.; Kamenecka, T.; Patel, S.; Gibson, R. E.; Sanabria, S.; Riffel, K.;
Eng, W.; King, C.; Yang, X.; Green, M. D.; O’Malley, S. S.; Hargreaves, R.;
Burns, H. D. Synapse 2005, 56, 205.
2578 J. Org. Chem. 2009, 74, 2578–2580 10.1021/jo802799c This article not subject to U.S. Copyright. Published 2009 by the American Chemical Society
Published on Web 02/20/2009