D. Bouchouk et al. / Tetrahedron Letters 50 (2009) 1100–1104
1103
Transition state II
(S ) - aldehyde
Transition state I
(R ) - aldehyde
O
O
O
N
O
N
O
O
H
Si-face
Si-face
O
H
Match
Mismatch
O
O
H
H
O
DBUH
O
N
O
O
N
DBUH
N
O
S
N
O
S
O
O
Ph
O
Ph
S i -S i => (2S α, 3R β , 4R γ)
From (R ) - Aldehyde:
From (S ) - Aldehyde:
R e - R e => (2R α, 3S β, 4S γ)
Figure 3. Comparison of transition states I and II: formation of the preferential diastereomeric adduct.
7. Boudjabi, S.; Dewynter, G.; Voyer, N.; Toupet, L.; Montero, J.-L. Eur. J. Org. Chem.
1999, 2275–2283.
8. Lee, C.-H.; Korp, J. D.; Kohn, H. J. Org. Chem. 1989, 54, 3077–3083.
9. Muller, G. W.; DuBois, G. E. J. Org. Chem. 1989, 54, 4471–4473.
10. Tremblay, M.; Voyer, N.; Boujabi, S.; Dewynter, G. F. J. Comb. Chem. 2002, 4,
429–435.
11. Albericio, F.; Garcia, J.; Michelotti, E. L.; Nicolas, E.; Tice, C. M. Tetrahedron Lett.
2000, 41, 3161–3163.
12. Albericio, F.; Bryman, L. M.; Garcia, J.; Michelotti, E. L.; Nicolas, E.; Tice, C. M. J.
Comb. Chem. 2001, 3, 290–300.
13. Dewynter, G.; Abdaoui, M.; Regainia, Z.; Montero, J.-L. Tetrahedron 1996, 52,
14217–14224.
14. Abdaoui, M.; Dewynter, G.; Aouf, N.; Montero, J. L. Phosphorous Sulfur Silicon
1996, 118, 39–45.
15. Abdaoui, M.; Dewynter, G.; Toupet, L.; Montero, J. L. Tetrahedron 2000, 56,
2427–2435.
16. Compound 3: Yield (N-carboxylation) 96%; Mp 85–87 °C; 1H NMR (CDCl3,
200 MHz) d (ppm): 7.32 (m, 5H, Ar-H); 4.83 (s, 2H, CH2–CO); 4.41 (s, 2H, CH2-
Ar); 1.50 (s, 9H, Boc); 13C NMR (CDCl3, 100 MHz) d (ppm): 159.95, 147.45,
133.32, 129.08, 128.80, 128.73, 86.64, 49.65, 44.33, 27.92. HRMS ESI(+):
326.0926 (calcd), 326.0961 (found).
17. Compound 4: Mp 53 °C. ½a D20
ꢁ
ꢀ27 (c = 1, dichloromethane); 1H NMR (CDCl3,
a
c
Figure 4. X-ray structure of (C -R, Cb-S, C -S)-12.
400 MHz) d (ppm): 7.60–7.30 (m, 5H, Ar-H), 5.42 (q, 1H, CH-Ar), 4.31 (dd, 2H,
AB System, CH2–CO), 1.94 (d, 3H, CH3), 1.52 (s, 9H, Boc); 13C NMR (CDCl3,
100 MHz) d (ppm): 159.66, 147.46, 137.0, 128.62, 128.59, 127.81, 86.66, 54.55,
49.11, 27.93, 17.12.
the nature of starting aldehyde), available only in one step. More
particularly, they can also be considered as useful chiral synthons
for the synthesis of optically active constrained analogues of b-hy-
18. Blaskovich, M. A.; Evindar, G.; Rose, N. G. W.; Wilkinson, S.; Luo, Y.; Lajoie, G. A.
J. Org. Chem. 1998, 63, 3631–3646. and references cited therein.
19. Gallina, C.; Liberatori, A. Tetrahedron 1974, 30, 667–673.
20. Oba, M.; Nakajima, S.; Nishiyama, K. Chem. Commun. 1996, 1875–1876.
21. Farran, D.; Parrot, I.; Martinez, J.; Dewynter, G. Angew. Chem., Int. Ed. 2007, 46,
7488–7490.
22. Farran, D.; Parrot, I.; Toupet, L.; Martinez, J.; Dewynter, J. Org. Biomol. Chem.
2008, 6, 3989–3996.
23. Seebach, D.; Juaristi, E.; Miller, D. D.; Schickli, C.; Weber, T. Helv. Chim. Acta
1987, 70, 237–261.
droxy a-aminoacids that are potentially endowed with antibacte-
rial activity18 or as functionalized 1,2 or 1,2,3 polyhydroxylated
analogues of arabinonate, known to be potent phosphoglucoisom-
erase inhibitors.33,34
We are currently investigating the scope of this process and
applying it to the synthesis of other analogues of (+)-polyhydr-
oxyamino acids, constituting the side chain moiety of antifungal
polyoxin antibiotics, endowed with biological activity.35 Relating
results will be reported in a next communication.
24. Stork, G.; Jacobson, R. M.; Levitz, R. Tetrahedron Lett. 1979, 20, 771–774.
25. Selected data: Compound 6: HPLC and NMR data on the crude showed two
diastereoisomers, in a 9/1 ratio; overall yield 58% (not separated). Data for
major product: 1H NMR (CDCl3, 400 MHz) d (ppm): 7.30 (m, 5H, Ar-H), 5.15 (m,
3
1H, CHb), 5.00 (d, 1H, NH, J(H -NH) = 8.0 Hz), 4.15 (dd, 1H, 3J
-NH) = 8.0 Hz,
a
(Ha
3J(H -Hb) = 2.9 Hz, CH ), 4.70 (d, 2H, 2J = 15.2 Hz, CH2-Ar), 1.70 (m, 2H, CH2–
a
a
CH3), 1.40 (s, 9H, Boc), 0.90 (t, 3H, CH2–CH3); 13C NMR (CDCl3, 100 MHz) d
(ppm): 166.36, 152.04, 133.88, 128.60, 128.38, 83.51, 73.83, 62.24, 44.87,
27.56, 24.90, 19.47. Compound 7: Yield 65%; Mp 125–126 °C; 1H NMR (CDCl3,
Acknowledgment
This work was partially supported by grant from Algerian
MESRS.
400 MHz) d (ppm): 7.30 (m, 5H, ArH), 5.08 (m, 1H, CHb), 4.94 (d, 1H, NH,
3J(H -NH) = 8.1 Hz), 4.65 (dd, 2H, 2J = 15.4 Hz, CH2-Ar), 4.25 (dd, J(H
=
3
a
a-NH)
3
8.1 Hz, J(H -Hb) = 2.3 Hz, CH ), 1.40 (s, 9H, Boc), 0.95 (dd, 6H, 3J = 6.7 Hz,
a
a
CH(CH3)2); 13C NMR (CDCl3, 100 MHz) d (ppm): 166.95, 152.10, 133.97, 128.69,
128.38, 122.67, 83.46, 66.20, 53.43, 44.87, 30.55, 27.51, 18.41, 18,11. Compound
8: Yield 58%; Mp 140–142 °C; 1H NMR (CDCl3, 400 MHz) d (ppm): 7.24 (m, 5H,
References and notes
3
3
1. Groutas, W. C.; Kuang, R.; Venkataraman, R.; Epp, J. B.; Ruan, S.; Prakash, O.
Biochemistry 1997, 36, 4739–4750.
2. Groutas, W. C.; Kuang, R.; Ruan, S.; Epp, J. B.; Venkataraman, R.; Truong, T. M.;
Ruan, S. Bioorg. Med. Chem. 1998, 6, 661–667.
3. Groutas, W. C.; Kuang, R.; Venkataraman, R.; Truong, T. M. Bioorg. Med. Chem.
2000, 8, 1713–1717.
4. Ducry, L.; Reinelt, S.; Seiler, P.; Diederich, F.; Bolin, D. R.; Campbell, R. M.; Olson,
G. L. Helv. Chim. Acta 1999, 82, 2432–2447.
5. Dewynter, G.; Aouf, N.; Criton, M.; Montero, J.-L. Tetrahedron 1993, 49, 65–76.
6. Black, E.; Breed, J.; Breeze, A. L.; Embrey, K.; Garcia, R.; Gero, T. W.; Godfrey, L.;
Kenny, P. W.; Morley, A. D.; Minshull, C. A.; Pannifer, A. D.; Read, J.; Rees, A.;
Russell, D. J.; Toader, D.; Tucker, J. Bioorg. Med. Chem. Lett. 2005, 15, 2503–2507.
Ar-H), 5.95 (d, 1H, J(H -NH) = 8.2 Hz, NH), 5.13 (dd, 1H, J(Hb-H ) = 8.1 Hz, CHb),
a
c
3
3
4.76 (dd, 2H, CH2-Ar), 4.30 (dd, 1H, J(H -NH) = 8.2 Hz, J(H -Hb) = 2.1 Hz, CH ),
a
a
a
1.90–1.45 (m, 11H, c-Hex), 1.40 (s, 9H, Boc); 13C NMR (CDCl3, 100 MHz) d
(ppm): 167.1, 152.09, 134.0, 128.70, 128.33, 126.47, 83.40, 61.02, 44.85, 39.61,
28.57, 28.40, 27.53, 25.80, 25.61, 25.50. Compound 9: Yield 70%; Mp 144–
146 °C; 1H NMR (CDCl3, 400 MHz) d (ppm): 7.4–7.2 (m, 10H, 2 Ar-H), 6.15 (d,
3
3
1H, J(H
= 2.4 Hz, CHb), 4.95 (d, 1H, J(H -NH) = 7.3 Hz, NH), 4.60 (dd, 2H,
a
3 3
a
-Hb)
CH2-Ar), 4.41 (dd, 1H, J(H -NH) = 7.3 Hz, J(H
= 2.4 Hz, CH ), 1.40 (s, 9H,
a
a
a
-Hb)
Boc); 13C NMR (CDCl3, 100 MHz) d (ppm): 165.20, 159.94, 135.38, 133.74,
129.22, 128.73, 128.54, 125.81, 83.84, 73.79, 64.64, 44.85, 29.71, 27.93, 27.58.
Compound 10: Yield 54%; Mp 146–148 °C; 1H NMR (CDCl3, 400 MHz) d (ppm):
7.50–7.30 (m, 6H, Ar-H, and 1H, C4H-Het), 7.25 (d, 2H, C2H-Het), 7.05 (d, 1H,