1024
D.-R. Hou et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1022–1025
ity of CB1 over CB2 receptor. These feature should merit further
studies, such as in vivo assays, on 1,2,3-triazoles as CB1
antagonists.
CH2CO2Ph
O
N
Br
N
N
Cl
OPh
10
2, 3
R = Cl, 11
R = H, 12
NaH, Bu4NI
65-70%
Acknowledgments
Cl
R
Cl
This research was supported by the National Science Council
(NSC 95-2323-B-007-005, NSC 96-2323-B-007-001 and NSC 95-
2133-M-008-007-MY3), and National Health Research Institutes
(NHRI), Taiwan, ROC. We are grateful to Ms. Ping-Yu Lin at the
Institute of Chemistry, Academia Sinica, Ms. Wen-Chi Hsiao at
NHRI, and Valuable Instrument Center in National Central Univer-
sity for obtaining mass analysis.
9c, X = NHBn
9d, X = NHCy
9f, X = NHCH2(
9g, X = NHCH2(
9h, X = NHCH2(
o
-FC6H4)
p-FC6H4)
CH2COX
N
m
-FC6H4)
-OMeC6H4)
-ClC6H4)
N
N
a
Cl
9i, X = NHCH2(
9j, X = NHCH2(
p
o
11
12
9k, X = NHCH2(p-ClC6H4)
9l, X = NHCH2(2,5-F2C6H3)
Cl
9m, X = NHC6H5
Cl
Cl
Supplementary data
CH2COX
Supplementary data associated with this article can be found, in
N
N
N
13c, X = NHBn
a
Cl
13f, X = NHCH2(
o
-FC6H4)
13g, X = NHCH2(
p-FC6H4)
References and notes
Cl
Cl
1. Bray, G. A. J. Med. Chem. 2006, 49, 4001.
Scheme 4. Reagents and conditions: (a) amine, toluene, reflux, 4–12 h, 65–98%.
2. Olshansky, S. J.; Passaro, D. J.; Hershow, R. C.; Layden, J.; Carnes, B. A.; Brody, J.;
Hayflick, L.; Butler, R. N.; Allison, D. B.; Ludwig, D. S. N. Engl. J. Med. 2005, 352,
1138.
3. (a) Cooke, D.; Bloom, S. Nat. Rev. Drug Discov. 2006, 919; (b) Report of a WHO
Consultation on Obesity: Obesity-Preventing and Managing a Global Epidemic;
World Health Organization: Geneva, 2000.
4. (a) Aronne, L. J.; Thornton-Jones, Z. D. Clin. Pharmacol. Ther. 2007, 81, 748; (b)
Bishop, M. J. J. Med. Chem. 2006, 49, 3999.
5. (a) Di Carlo, G.; Izzo, A. A. Exp. Opin. Invest. Drugs 2003, 12, 39; (b) Pertwee, R. G.
Exp. Opin. Invest. Drugs 2000, 9, 1553; (c) Xiang, J.-N.; Lee, J. C. Annu. Rep. Med.
Chem. 1999, 34, 199.
6. Trillou, R. C.; Arnone, C.; Gonalons, N.; Keane, P.; Maffrand, J. P.; Soubrie, P. J.
Physiol. Regul. Integr. Comp. Physiol. 2003, 284, 345.
7. Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.; Devane, W. A.;
Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R.; Mechoulam, R.; Pertwee,
R. G. Pharmacol. Rev. 2002, 54, 161.
8. (a) Lange, J. H. M.; Kruse, C. G. Drug Discov. Today 2005, 10, 693; (b) Howlett, A.
C.; Breivogel, C. S.; Childers, S. R.; Deadwyler, S. A.; Hampson, R. E.; Porrio, L. J.
Neuropharmacology 2004, 47, 345.
Cl
Cl
Cl
O
O
N
N
N
N
N
N
N
N
H
H
Cl
Cl
Cl
7e; more planar
5e
Figure 2. Twist of the carbonyl group away from the plane of triazole due to the
steric hindrance of the admantyl group and ortho-chlorines.
9. (a) Carrier, E. J.; Kearn, C. S.; Barkmeier, A. J.; Breese, N. M.; Yang, W.;
Nithipatikom, K.; Pfister, S. L.; Cambell, W. B.; Hillard, C. J. Mol. Pharmacol. 2004,
65, 999; (b) Klein, T. W.; Newton, C.; Larsen, K.; Lu, L.; Perkins, I.; Nong, L.;
Friedman, H. J. Leukoc. Biol. 2003, 74, 486.
10. (a) Rinaldi-Carmona, M.; Barth, F.; Heaulme, M.; Shire, D.; Calandra, B.; Congy,
C.; Martinez, S.; Maruani, J.; Neliat, G.; Caput, D.; Ferrara, P.; Soubrie, P.;
Berliere, J.-C.; le Fur, G. FEBS Lett. 1994, 350, 240; (b) Rinaldi-Carmona, M.;
Barth, F.; Heaulme, M.; Alonso, R.; Shire, D.; Congy, C.; Soubrie, P.; Berliere, J.-
C.; le Fur, G. Life Sci. 1995, 56, 1941; (c) Mokhopadhyay, S.; Howlett, A. C. Mol.
Pharmacol. 2005, 67, 2016; (d) Ruiu, S.; Pinna, G. A.; Marchese, G.; Mussinu, J.
M.; Saba, P.; Tambaro, S.; Casti, P.; Vargiu, R.; Pani, L. J. Pharmacol. Exp. Ther.
2003, 306, 363.
11. (a) Högenauer, E. K. Expert Opin. Ther. Patents 2007, 17, 1457; (b) Muccioli, G.
G.; Lambert, D. M. Expert Opin. Ther. Patents 2006, 16, 1405; (c) Muccioli, G. G.
Chem. Biodivers. 2007, 4, 1805; (d) Hepworth, D.; Carpino, P. A.; Black, S. C.
Annu. Rep. Med. Chem. 2006, 41, 77.
12. (a) Muccioli, G. G.; Wouters, J.; Charlier, C.; Scriba, G. K. E.; Pizza, T.; Pace, P. D.;
Martino, P. D.; Poppitz, W.; Poupaert, J. H.; Lambert, D. M. J. Med. Chem. 2006,
49, 872; (b) Lang, J. H. M.; Coolen, H. K.; van Stuivenberg, H. H.; Dijksman, J. A.;
Herremans, A. H.; Ronken, E.; Keizer, H. G.; Tipker, K.; McCreary, A. C.;
Veerman, W.; Wals, H. C.; Stork, B.; Verveer, P. C.; den Hartog, A. P.; de Jong, N.
M.; Adolfs, T. J.; Hoogendoorn, J.; Kruse, C. G. J. Med. Chem. 2004, 47, 627; (c)
Lange, J. H. M.; van Stuivenberg, H. H.; Veerman, W.; Wals, H. C.; Stork, B.;
Coolen, H. K. A. C.; McCreary, A. C.; Adolfs, T. J. P.; Kruse, C. G. Bioorg. Med. Chem.
Lett. 2005, 15, 4794.
13. Lin, L. S.; Lanza, T. J.; Jewell, J. J. P.; Liu, P.; Shah, S. K.; Qi, H.; Tong, X.; Wnag, J.;
Xu, S. S.; Fong, T. M.; Shen, C.-P.; Lao, J.; Xiao, J. C.; Shearman, L. P.; Stribling, D.
S.; Rosko, K.; Strack, A.; Marsh, D. J.; Feng, Y.; Kumar, S.; Samuel, K.; Yin, W.; der
Ploeg, L. V.; Mills, S. G.; MacCoss, M.; Goulet, M. T.; Hagmann, W. K. J. Med.
Chem. 2006, 49, 7584.
14. (a) Hutst, D. P.; Lynch, D. L.; Barnett-Norris, J.; Hyatt, S. M.; Seltzman, H. H.;
Zhong, M.; Song, Z.-H.; Lewis, D.; Reggio, P. H. Mol. Pharmacol. 2002, 62, 1274;
(b) Barth, F.; Congy, C.; Martinez, S.; Rinaldi, M. WO97/19063, 2000.; c Barth,
F.; Casellas, P.; Congy, C.; Martinez, S.; Rinaldi, M. C07D/23114, 1995.
15. (a) Berggren, A. I. K.; Bostrom, S. J.; Cheng, L.; Elebring, S. T.; Greasley, P.;
Nagard, M.; Wilstermann, J. M.; Terricabras, E. WO2004058249, 2004.; (b)
Francis, B.; Christian, C.; Laurent, H.; Murielle, R.-C. WO2006087476, 2006.; (c)
Francis, B.; Christian, C.; Laurent, H.; Murielle, R.-C. WO2007000505, 2007.
logues 13. We also noticed that the benzyl amides and its deriva-
tives (9c and 9f–l) are more effective than the esters (11 and 9a)
or other amides (9b, 9d, and 9m) prepared. Indeed, halogenated
benzyl amides (9f and 9g) show the best potency (IC50 < 20 nM).
These triazoles were further screened toward CB2 receptor, and
the results showed that they have very low affinity to CB2R. Such
huge CB1/CB2 selectivity is rather unusual among the reported
antagonists.7,26 However, we do not know the reasons for such dis-
crimination at this moment.
Comparing with other heterocycles as the central unit of CB1
antagonists, the number of substituents for 1,2,3-triazole is limited
to three, due to the low valence number of nitrogen (there are four
substituents in pyrazole, for example). The few substituents ease
the steric repulsions around the central core and lead to strong
conjugation between the carbonyl group and the 1,2,3-triazole of
ureas 5–7, thus enhanced the double bond character in the bond-
ing of N-2 and the carbon. The key receptor–ligand interaction is
proposed to be the hydrogen bond between the carbonyl group
and the Lys192-Asp366 residue of the CB1 receptor.12c,14a,27 Thus,
the rigid conformation in these ureas (5–7) holds back the impor-
tant hydrogen bond for the ligand–receptor interaction. On the
other hand, the disruption of conjugation by inserting a methylene
group not only changes the distance, but also allows the orienta-
tion of the carbonyl group more suitable for the key hydrogen
bonding; therefore, better potency.
In summary, we have reported the 1,2,3-triazoles as effec-
tive, new CB1 antagonists. These compounds exhibit high
level in vitro activity for CB1 receptor as well as good selectiv-