484
A.S. Dudnik et al. / Journal of Organometallic Chemistry 694 (2009) 482–485
Next, we investigated the scope of this reaction. Thus, isomeriza-
3. Conclusions
tion of differently substituted propargylic esters 1a–g was exam-
ined in the presence of Ph3PAuOTf catalyst (Table 1) [13]. It was
found that the cascade transformation of propargylic esters 1a,c,d
possessing various 1,3-migrating groups, such as phosphatyloxy-
(entry 1), acyloxy- (entry 3) and pivaloxy- (entry 4), proceeded
highly stereoselectively to provide good to high yields of (1E,3E)-
dienes 2a,c,d, respectively [14]. b-Dialkyl- (entries 5 and 7), alkyl-
In summary, we developed a mild and stereoselective gold(I)-
catalyzed approach toward multisubstituted (1E,3E)-dienes from
propargylic esters which features tandem sequence of 1,3-migra-
tion and a proton transfer.
Acknowledgment
aryl (entries 2 and 6), as well as b-diaryl- and
a-alkyl- (entry 6)
substituted propargylic esters, were nearly equally efficient in this
transformation, providing corresponding 1,3-dienes 2b,e,f,g in good
to high yields. However, isomerization of phosphates 1b and 1e,
unsymmetrically substituted at the b-position, proceeded with low-
er stereoselectivity (entries 2 and 5).
The support of the National Institutes of Health (Grant GM-
64444) is gratefully acknowledged.
References
We propose the following mechanism for the cascade transfor-
mation of propargyl esters 1 into 1,3-dienes 2 (Scheme 1). The
Au(I)-catalyzed 1,3-migration [15] transforms 1 into a cyclic inter-
mediate iv [1b,3c,5b] which, upon elimination of gold catalyst, fur-
nishes allene intermediate 3. A direct elimination of the proton
from iv gives a vinyl gold intermediate v, which after the protio-
deauration produces 1,3-diene 2 and regenerates the Au(I)-catalyst
(Scheme 1).
[1] (a) For recent reviews, see: J. Marco-Contelles, E. Soriano, Chem. Eur. J. 13
(2007) 1350;
(b) N. Marion, S.P. Nolan, Angew. Chem., Int. Ed. 46 (2007) 2750.
[2] (a) For recent reviews, see: S. Ma, S. Yu, Z. Gu, Angew. Chem., Int. Ed. 45 (2006)
200;
(b) A.S.K. Hashmi, Angew. Chem., Int. Ed. 44 (2005) 6990;
(c) A. Hoffmann-Röder, N. Krause, Org. Biomol. Chem. 3 (2005) 387;
(d) A.M. Echavarren, C. Nevado, Chem. Soc. Rev. 33 (2004) 431;
(e) G. Dyker, Angew. Chem., Int. Ed. 39 (2000) 4237;
(f) A.S.K. Hashmi, Chem. Rev. 107 (2007) 3180;
Exclusive or predominant (1E,3E)-stereoselectivity of the for-
mation of 1,3-diene products 2, observed during the Au(I)-cata-
lyzed cascade isomerization of propargylic esters 1, can be
rationalized by the consideration of the stereoelectronic models
A/B and C/D for the proton elimination and protiodeauration steps,
respectively. Accordingly, proton elimination in cyclic iv occurs
through the conformationally more favorable model A leading to
3E-stereoisomeric v, whereas in the unfavorable model B bulkier
RL experiences repulsion with 1,3-dioxenium moiety (Scheme 2).
Similarly, 1E-configuration in 2 arises from the elimination of
Au(I)-catalyst proceeding exclusively via the conformationally pre-
ferred model C (Scheme 2).
(g) A.S.K. Hashmi, G.J. Hutchings, Angew. Chem., Int. Ed. 45 (2006) 7896;
(h) A. Fürstner, P.W. Davies, Angew. Chem., Int. Ed. 46 (2007) 3410;
(i) Y. Yamamoto, J. Org. Chem. 72 (2007) 7817;
(j) L. Zhang, J. Sun, S.A. Kozmin, Adv. Synth. Catal. 348 (2006) 2271;
(k) R.A. Widenhoefer, X. Han, Eur. J. Org. Chem. (2006) 4555;
(l) T. Ishida, M. Haruta, Angew. Chem., Int. Ed. 46 (2007) 7154;
(m) D.J. Gorin, F.D. Toste, Nature 446 (2007) 395.
[3] (a) C.H.M. Amijs, V. López-Carrillo, A.M. Echavarren, Org. Lett. 9 (2007) 4021;
(b) M. Yu, G. Zhang, L. Zhang, Org. Lett. 9 (2007) 2147;
(c) S. Wang, L. Zhang, J. Am. Chem. Soc. 128 (2006) 8414.
[4] (a) G. Lemière, V. Gandon, K. Cariou, T. Fukuyama, A.-L. Dhimane, L.
Fensterbank, M. Malacria, Org. Lett. 9 (2007) 2207;
(b) A. Buzas, F. Gagosz, J. Am. Chem. Soc. 128 (2006) 12614;
(c) N. Marion, S. Díez-González, P. Frémont, A.R. Noble, S.P. Nolan, Angew.
Chem., Int. Ed. 45 (2006) 3647;
(d) L. Zhang, S. Wang, J. Am. Chem. Soc. 128 (2006) 1442.
[5] (a) A. Buzas, F. Istrate, F. Gagosz, Org. Lett. 8 (2006) 1957;
(b) L. Zhang, J. Am. Chem. Soc. 127 (2005) 16804;
R1 R2
(c) A.W. Sromek, A.V. Kel’in, V. Gevorgyan, Angew. Chem., Int. Ed. 43 (2004)
2280;
(d) T. Schwier, A.W. Sromek, D.M.L. Yap, D. Chernyak, V. Gevorgyan, J. Am.
Chem. Soc. 129 (2007) 9868.
R2
R2
R1
H
O
LAu OTf
O
O
R1
LAu
X
O
H
X
O
X
O
- H
1,3-OXO~
L = Ph3P
[6] For Au(I)-catalyzed synthesis of 2-acyloxy-1,3-dienes from allenes via formal
1,3-acyloxy migration, see: A. Buzas, F. Istrate, F. Gagosz, Org. Lett. 9 (2007)
985.
LAu
LAu
v
iv
1
[7] S. Wang, L. Zhang, Org. Lett. 8 (2006) 4585.
- LAu
+H
LAu
- LAu
O
[8] G. Li, G. Zhang, L. Zhang, J. Am. Chem. Soc. 130 (2008) 3740.
[9] A.S. Dudnik, T. Schwier, V. Gevorgyan, Org. Lett. 10 (2008) 1465.
[10] For general review, see: P.H. Ducrot, in: A.R. Katritzky, R.J.K. Taylor (Eds.),
Comprehensive Organic Functional Group Transformations II, vol. 1, Elsevier,
Oxford, UK, 2005, pp. 375–426.
R2
R1
R2
E
E
X = >CMe;
>P(OEt)2
•
OXO
X
O
H
R1
3
2
H
[11] (a) G. Saucy, R. Marbet, H. Lindlar, O. Isler, Helv. Chim. Acta 42 (1959) 1945;
(b) H. Schlossarczyk, W. Sieber, M. Hesse, H.-J. Hansen, H. Schmid, Helv. Chim.
Acta 56 (1973) 875;
Scheme 1. Mechanistic rationale for Au(I)-catalyzed cascade.
(c) R.C. Cookson, M.C. Cramp, P.J. Parsons, J. Chem. Soc., Chem. Commun.
(1980) 197.
[12] (a) There has been a recent discussion on the role of Brønsted acids in
homogenous transition metal-catalyzed reactions. For the most relevant
references, see: A.S.K. Hashmi, Catal. Today 122 (2007) 211;
(b) Z. Li, J. Zhang, C. Brouwer, C.-G. Yang, N.W. Reich, C. He, Org. Lett. 8 (2006)
4175;
X
X
O
O
O
O
H
H
H
H
(c) D.C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya, J.F. Hartwig, Org.
Lett. 8 (2006) 4179;
(d) J.U. Rhee, M.J. Krische, Org. Lett. 7 (2005) 2493.
vs
vs
RS
RL
RL
RS
Au
PPh3
B
A
Au
PPh3
[13] Representative procedure for the Au(I)-catalyzed isomerization of propargylic
esters 1 into (1E,3E)-dienes 2: To a foiled 25 ml flask with septa charged with
2.5 mol% of 1:1 mixture of Au(PPh3)Cl (6.2 mg, 0.0125 mmol) and AgOTf
(3.2 mg, 0.0125 mmol) and the 10 ml of anhydrous dichloromethane and
stirred for 15 min was then added propargylic phosphate 1a (141.15 mg,
0.5 mmol) under argon atmosphere and the reaction mixture was stirred at
room temperature for 1 h. The reaction mixture was then filtered through a
layer of flash Silica (EtOAc – eluent), the solvents were removed in vacuo, and
the residue was purified by column chromatography (EtOAc-Hex: 1:1) to give
diethyl (1E,3E)-4-phenylbuta-1,3-dien-1-yl phosphate 2a (117.4 mg, 83%): 1H
NMR (500 MHz, CDCl3) d 7.36 (s, 2H), 7.28–7.33 (m, 2H), 7.19–7.24 (m, 1H),
6.83 (dd, J = 11.92, 6.42 Hz, 1H), 6.64 (dd, J = 15.77, 11.00 Hz, 1H), 6.52 (d,
J = 15.77 Hz, 1H), 6.21 (t, J = 11.46 Hz, 1H), 4.15–4.24 (m, 4H), 1.37 (td, J = 7.11,
favored
RS
H
RS
H
OXO
RL
RL
OXO
H
H
H
H
C
D
Au
PPh3
Au
PPh3
Scheme 2. Stereoelectronic models A–D.