1618 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 6
Choi et al.
(10) Garcia-Echeverria, C. Inhibitors of signaling interfaces: targeting Src
homology 2 domains in drug discovery. Protein Tyrosine Kinases
2006, 31–52.
(11) Burke, T. R., Jr. Development of Grb2 SH2 domain signaling
antagonists: a potential new class of antiproliferative agents. Int. J.
Pept. Res. Ther. 2006, 12, 33–48.
(12) Batzer, A. G.; Rotin, D.; Urena, J. M.; Skolnik, E. Y.; Schlessinger,
J. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth
factor receptor. Mol. Cell. Biol. 1994, 14, 5192–201.
(13) Zhou, M. M.; Harlan, J. E.; Wade, W. S.; Crosby, S.; Ravichandran,
K. S.; Burakoff, S. J.; Fesik, S. W. Binding affinities of tyrosine-
phosphorylated peptides to the COOH-terminal SH2 and NH2-terminal
phosphotyrosine binding domains of Shc. J. Biol. Chem. 1995, 270,
31119–31123.
(14) Pelicci, G.; Lanfrancone, L.; Grignani, F.; McGlade, J.; Cavallo, F.;
Forni, G.; Nicoletti, I.; Grignani, F.; Pawson, T.; Pelicci, P. G. A novel
transforming protein (SHC) with an SH2 domain is implicated in
mitogenic signal transduction. Cell 1992, 70, 93–104.
(15) Ravichandran, K. S. Signaling via Shc family adapter proteins.
Oncogene 2001, 20, 6322–6330.
(16) Saucier, C.; Khoury, H.; Lai, K. M. V.; Peschard, P.; Dankort, D.; Naujokas,
M. A.; Holash, J.; Yancopoulos, G. D.; Muller, W. J.; Pawson, T.; Park, M.
The Shc adaptor protein is critical for VEGF induction by Met/HGF and
ErbB2 receptors and for early onset of tumor angiogenesis. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 2345–2350.
(17) Saucier, C.; Papavasiliou, V.; Palazzo, A.; Naujokas, M. A.; Kremer, R.; Park,
M. Use of signal specific receptor tyrosine kinase oncoproteins reveals that
pathways downstream from Grb2 or Shc are sufficient for cell transformation
and metastasis. Oncogene 2002, 21, 1800–1811.
tyryl-NovaGel HL resin (Novabiochem, Inc.) in dry 1,2-dichloro-
ethane/trimethyl orthoformate (2:1) solution, followed by mixing
at room temperature (12 h). The resin was washed successively
with DMF, 10% i-Pr2NEt/DMF, and DMF. Sequential coupling of
amino acids was then achieved according to the general synthetic
procedures outlined above. For peptides bearing NR-alkenyl or NR-
alkyl residues, introduction of NR-alkenyl and NR-alkyl groups was
conducted on solid-phase resin by reaction of the corresponding
N-terminally deprotected peptide with the appropriate alkenyl or
alkyl bromide (1.2 equiv) and powdered K2CO3 in anhydrous DMF
at room temperature (overnight). Resins were washed with DMF
(2×), 50% aqueous MeOH (5×), and CH2Cl2 (3×), followed by
coupling of remaining amino acid residues. Cleavage of final
peptides from the resin afforded side-chain-deprotected peptide
products, which were purified by reverse phase preparative HPLC.
Ac-pTyr-Gln-Gly(N-allyl)-Leu-NH(homoallyl) (44). 1H NMR
(400 MHz, DMSO-d6): δ 8.24 (dd, J ) 8, 12 Hz, 1H), 7.97-7.91
(m, 2H), 7.20 (d, 1H), 7.09-7.05 (m, 2H), 6.98 (d, J ) 8 Hz, 2H),
5.75-5.56 (m, 2H), 5.16-5.08 (m, 1H), 5.04-5.01 (m, 1H),
4.96-4.91 (m, 1H), 4.65-4.61 (m, 1H), 4.47-4.44 (m, 2H),
4.18-4.16 (m, 2H), 4.06-4.02 (m, 2H), 3.63-3.55 (m, 2H), 3.12
(s, 1H), 3.10-2.99 (m, 1H), 2.65-2.62 (m, 1H), 2.04-1.98 (m,
1H), 1.73 (s, 3H), 1.53-1.46 (m, 1H), 1.40-1.38 (m, 2H), 0.82
(d, J ) 4 Hz, 3H), 0.77 (d, J ) 8 Hz, 3H). MALDI-MS calcd for
C31H47N6O10P: 694.71; found 717.25.
Ac-pTyr-Gln-Gly(N-ethyl)-Leu-amide (46). 1H NMR (400
MHz, DMSO-d6): δ 7.05 (d, J ) 8 Hz, 2H), 6.98 (d, J ) 8 Hz, 2H),
6.91 (br, 2H), 4.65-4.64 (m, 1H), 4.47-4.11 (q, J ) 8 Hz, 2H),
4.09-4.07 (m, 1H), 3.68-3.62 (m, 1H), 3.55-3.52 (m, 1H), 3.26-3.19
(m, 2H), 2.85-2.83 (m, 1H), 2.65-2.62 (m, 2H), 2.33-2.32 (m, 1H),
2.08-2.06 (m, 2H), 1.93 (d, J ) 8 Hz, 1H), 1.76 (d, 2H), 1.74 (s,
3H), 1.55-1.53 (m, 1H), 1.07 (t, J ) 8 Hz, 3H), 0.88-0.87 (m, 1H),
0.84 (d, J ) 4 Hz, 3H), 0.78 (d, J ) 4 Hz, 3H). MALDI-MS calcd
for C26H41N6O10P: 628.61; found 650.52.
(18) Ursini-Siegel, J.; Hardy, W. R.; Zuo, D.; Lam, S. H. L.; Sanguin-
Gendreau, V.; Cardiff, R. D.; Pawson, T.; Muller, W. J. ShcA
signalling is essential for tumour progression in mouse models of
human breast cancer. EMBO J. 2008, 27, 910–920.
(19) Zhou, M.-M.; Meadows, R. P.; Logan, T. M.; Yoon, H. S.; Wade,
W. S.; Ravichandran, K. S.; Burakoff, S. J.; Fesik, S. W. Solution
structure of the Shc SH2 domain complexed with a tyrosine-
phosphorylated peptide from the T-cell receptor. Proc. Natl. Acad.
Sci. U.S.A. 1995, 92 (17), 7784–7788.
(20) Protein Data Bank code 1TCE.
(21) See NoVabiochem Letters, January 2004 (catalog number 04-12-3911).
(22) Kertesz, A.; Varadi, G.; Toth, G. K.; Fajka-Boja, R.; Monostori, E.;
Sarmay, G. Optimization of the cellular import of functionally active
SH2-domain-interacting phosphopeptides. Cell. Mol. Life Sci. 2006,
63, 2682–2693.
(23) Garcia-Echeverria, C.; Jiang, L.; Ramsey, T. M.; Sharma, S. K.; Chen,
Y. N. P. A new Antennapedia-derived vector for intracellular delivery
of exogenous compounds. Bioorg. Med. Chem. Lett. 2001, 11, 1363–
1366.
(24) Blackwell, H. E.; Sadowsky, J. D.; Howard, R. J.; Sampson, J. N.;
Chao, J. A.; Steinmetz, W. E.; O’Leary, D. J.; Grubbs, R. H. Ring-
closing metathesis of olefinic peptides: design, synthesis, and structural
characterization of macrocyclic helical peptides. J. Org. Chem. 2001,
66, 5291–5302.
(25) Oishi, S.; Shi, Z.-D.; Worthy, K. M.; Bindu, L. K.; Fisher, R. J.; Burke,
T. R., Jr. Ring-closing metathesis of allylglycines with ꢁ-vinyl-
substituted residues as an approach to novel macrocyclic ꢁ-bend
mimetics. ChemBioChem 2005, 6, 668–674.
(26) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and activity
of a new generation of ruthenium-based olefin metathesis catalysts
coordinated with 1,3-dimesityl-4,5 dihydroimidazol-2-ylidene ligands.
Org. Lett. 1999, 1, 953–956.
(27) Mikol, V.; Baumann, G.; Zurini, M. G. M.; Hommel, U. Crystal
structure of the SH2 domain from the adaptor protein SHC: a model
for peptide binding based on X-ray and NMR data. J. Mol. Biol. 1995,
254, 86–95.
(28) Oishi, S.; Karki, R. G.; Shi, Z.-D.; Worthy, K. M.; Bindu, L.; Chertov,
O.; Esposito, D.; Frank, P.; Gillette, W. K.; Maderia, M.; Hartley, J.;
Nicklaus, M. C.; Barchi, J. J., Jr.; Fisher, R. J.; Burke, T. R., Jr.
Evaluation of macrocyclic Grb2 SH2 domain-binding peptide mimetics
prepared by ring-closing metathesis of C-terminal allylglycines with
an N-terminal beta-vinyl-substituted phosphotyrosyl mimetic. Bioorg.
Med. Chem. 2005, 13, 2431–2438.
(29) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.;
Kluwer Academic/Plenum Publishers: New York, 1999.
(30) Boor, C. D. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer
Academic/Plenum Publishers: New York, 1999.
Acknowledgment. Appreciation is expressed to Dr. Oleg
Chertov for purification of Shc SH2 domain protein. The work
was supported in part by the Intramural Research Program of
the NIH, Center for Cancer Research, NCIsFrederick, and the
National Cancer Institute, National Institutes of Health, under
Contract N01-CO-12400.
Supporting Information Available: Mass spectral data for
peptide products. This material is available free of charge via the
References
(1) Wells, J. A.; McClendon, C. L. Reaching for high-hanging fruit in drug
discovery at protein-protein interfaces. Nature 2007, 450, 1001–1009.
(2) Bradshaw, J. M.; Waksman, G. Molecular recognition by SH2
domains. AdV. Protein Chem. 2003, 61, 161–210.
(3) Pawson, T. Specificity in signal transduction: from phosphotyrosine-
SH2 domain interactions to complex cellular systems. Cell 2004, 116,
191–203.
(4) Pawson, T.; Gish, G. D.; Nash, P. The SH2 domain: a prototype for
protein interaction modules. Modular Protein Domains 2005, 5–36.
(5) Ladbury, J. E. Protein-protein recognition in phosphotyrosine-
mediated intracellular signaling. Protein ReV. 2005, 3, 165–184.
(6) Machida, K.; Mayer, B. J. The SH2 domain: versatile signaling module
and pharmaceutical target. Biochim. Biophys. Acta, Proteins Proteom-
ics 2005, 1747, 1–25.
(7) Broadbridge, R. J.; Sharma, R. P. The Src homology-2 domains (SH2
domains) of the protein tyrosine kinase p56lck: structure, mechanism
and drug design. Curr. Drug Targets 2000, 1, 365–386.
(8) Shakespeare, W. C. SH2 domain inhibition: a problem solved. Curr.
Opin. Chem. Biol. 2001, 5, 409–415.
(9) Metcalf, C. A., III; Sawyer, T. Src homology-2 domains and structure-
based, small-molecule library approaches to drug discovery. Drug
DiscoVery Strategies Methods 2004, 23–59.
JM800789H