10.1002/anie.201806480
Angewandte Chemie International Edition
COMMUNICATION
derivative were also prepared, highlighting the applicability of this
method to synthesize substituted heterocycles.
generous support. We thank the Cardiff Catalysis Institute for
providing access to the GC equipment used in this study and in
particularly the expert technical support from Dr Greg Shaw.
Encouraged by the success of this one-pot two step procedure,
we sought to push this methodology further and explore a one-
pot, one step protocol, whereby the organozinc reagent would be
generated and consumed through palladium catalysis all within
the same reaction jar. To bias the system against complex
mixtures, we took advantage of the fact that alkyl organozincs
form more readily than aryl organozinc species.18 Thus dosing
both alkyl and aryl halide coupling partners with zinc, DMA and
Pd-PEPPSI-iPent into the grinding jar along with the grinding ball
and grinding for 8 hours afforded the desired sp3 – sp2 bond
formation (Scheme 5). Excellent yields were obtained for the three
examples explored, demonstrating the ability to perform Negishi
coupling without directly handling organozinc reagents. Moreover,
this has been demonstrated with three different forms of zinc; 20-
30 mesh granular, powder and puriss, all of which lead to the
desired products in excellent yields.
Keywords: ball milling • mechanochemistry • solventless
reactions • organozinc • organometallic
[1]
[2]
For some recent reflections on the discipline of Organic Synthesis see:
P.S. Baran, J. Am. Chem. Soc. 2018, 140, 4751; and the collection of
papers that make up ‘Rosarium Philosophorum – Organic Synthesis’ in
Isr. J. Chem. 2018, 58, 1.
For some recent reviews on mechanochemistry see: a) J. L. Howard, Q.
Cao, D. L. Browne, Chem. Sci. 2018, 9, 3080; b) J. Andersen, J. Mack,
Green Chem. 2018, 20, 1435; c) T. Friščić, I. Halasz, V. Štrukil, M.
Eckert-Maksić, R. E. Dinnebier, ACS Cent. Sci. 2017, 3, 13; d) J. G.
Hernández, C. Bolm, J. Org. Chem. 2017, 82, 4007; e) O. Eguaogie, J.
S. Vyle, P. F. Conlon, M. A. Gîlea, Y. Liang, Beilstein J. Org. Chem. 2018,
14, 955; f) T.-X. Métro, J. Martinez, F. Lamaty, ACS Sustainable Chem.
Eng. 2017, 5, 9599.
[3]
S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić,; F.
Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini,
A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell,
Chem. Soc. Rev. 2012, 41, 413.
R
R
N
N
R
R
Cl Pd Cl
Br
Ar
N
alkyl
[4]
[5]
For an inciteful industrial perspective on late-stage functionalization see:
T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal; S. W. Krska, Chem.
Soc. Rev. 2016, 45, 546.
alkyl
Ar Br
[1 mol%]
Cl
Zn (form), DMA
mixer mill, 30 Hz, 8 h
a) Y. H. Chen, M. Ellwart, V. Malakhov, P. Knochel, Synthesis. 2017, 49,
3215; b) C. I. Stathakis, S. Bernhardt, V. Quint, P. Knochel, Angew.
Chem. Int. Ed. 2012, 51, 9428; Angew. Chem. 2012, 124, 9563. c) A.
Hernán-Gómez, E. Herd, E. Hevia, A. R. Kennedy, P. Knochel, K.
Koszinowski, S. M. Manolikakes, R. E. Mulvey, C. Schnegelsberg,
Angew. Chem. Int. Ed. 2014, 53, 2706; Angew. Chem. 2014, 126, 2744
d) Y. H. Chen, M. Ellwart, G. Toupalas, Y. Ebe, P. Knochel, Angew.
Chem. Int. Ed. 2017, 56, 4612; Angew. Chem., 2017, 129, 4683.
a) K. R. Campos, A. Klapars, J. H. Waldman, P. G. Dormer, C.-Y. Chen,
J. Am. Chem. Soc. 2006, 128, 3538; b) L. Jin, C. Liu, J. Liu, F. Hu, Y.
Lan, A. S. Batsanov, J. A. K. Howard, T. B. Marder, A. Lei, J. Am. Chem.
Soc. 2009, 131, 16656; c) E. Hevia, J. Z. Chua, P. Garcia-Alvarez, A. R.
Kennedy, M. D. McCall, Proc. Natl. Acad. Sc. U.S.A. 2010, 107, 5294.
a) S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7685;
Angew. Chem. 2007, 119, 7829 b) C. I. Stathakis, S. M. Manolikakes, P.
Knochel, Org. Lett. 2013, 15, 1302; c) D. Haas, D. Sustac-Roman, S.
Schwarz, P. Knochel, Org. Lett. 2016, 18, 6380; d) S. M. Manolikakes,
M. Ellwart, C. I. Stathakis, P. Knochel, Chem. Eur. J. 2014, 20, 12289;
e) Y. H. Chen, C. P.Tüllmann, M. Ellwart, P. Knochel, Angew. Chem. Int.
Ed. 2017, 56, 9236; Angew. Chem. 2017, 129, 9364.
2 Steps in 1 operation - generate & consume organo-zinc
1. add reagents to milling jar
2. screw jar closed (finger tight)
3. press play
EtO2C
CO2Et
CN
5;
10;
11;
78% [powder]
80% [20-30 Granular]
79% [puriss]
74% [powder]
76% [20-30 Granular]
84% [puriss]
96% [powder]
85% [20-30 Granular]
99% [puriss]
[6]
[7]
Scheme 5 One-pot, one-step Negishi reaction
In summary, we have developed a novel method for the synthesis
and subsequent reaction of organozinc species under
mechanochemical conditions, without the need to use inert
atmosphere techniques or dry solvents. Organozincs can be
generated from an alkyl halide irrespective of the physical form of
commercially available zinc metal. A coupling partner could then
be added to the reaction mixture along with a palladium catalyst
and TBAB to perform the Negishi reaction in a one-pot, two-step
process. Most excitingly, these conditions were successfully
modified to realize the direct generation and consumption of
organozinc reagents through a one-pot Negishi coupling process
for the synthesis Csp3 – Csp2 bonds thusrendering it more
operationally simplistic than current procedures.19 The application
of this technique to the generation and use of other organometallic
species is currently underway in our laboratories.
[8]
[9]
a) J.-P. Gillet, R. Sauvetre, J.-F. Normant, Tetrahedron Lett., 1985, 26,
3999; b) C. E. Tucker, T. N. Majid, P. Knochel, J. Am. Chem. Soc., 1992,
114, 3983; c) F. M, Piller, A. Metzger, M. A. Schade, B. A. Haag, A.
Gavryushin, P. Knochel, Chem. Eur. J., 2009, 15, 7192.
a) R. D. Rieke, S. J. Uhm, P. M. Hudnall, J. Chem. Soc., Chem. Commun.
1973, 269b. b) R. D. Rieke, P. T.-J. Li, T. P. Burns, S. T. Uhm, J. Org.
Chem. 1981, 46, 4323; c) L. Zhu, R. M. Wehmeyer, R. D. Rieke, J. Org.
Chem., 1991, 56, 1445; d) A. Guijarro, D. M. Rosenberg, R. D. Rieke, J.
Am. Chem. Soc. 1999, 121, 4155; e) R. D. Rieke, M. V. Hanson, J. D.
Brown, Q. J. Niu, J. Org. Chem. 1996, 61, 2726; f) M. V. Hanson, R. D.
Rieke, J. Am. Chem. Soc. 1995, 117, 10775.
[10] For some examples of preparing activated zinc using chemical additives
see: a) P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem.
1988, 53, 2390; b) S. C. Berk, P. Knochel, M. C. P. Yeh, J. Org. Chem.
1988, 53, 5789; c) P. Knochel, J. F. Normant, Tetrahedron Lett. 1984, 25,
1475; d) J. K. Gawroński, Tetrahedron Lett., 1984, 25, 2605; e) G. Picotin,
P. Miginiac, J. Org. Chem. 1987, 52, 4796; f) R. Ikegami, A. Koresawa,
T. Shibata, K. Takagi, J. Org. Chem., 2003, 68, 2195; g) M. S. Newman,
J. Am. Chem. Soc. 1942, 64, 2131; h) A. K. Bose, K. Gupta, M. S.
Acknowledgements
D.L.B is grateful to the EPSRC for a First Grant (D.L.B.
EP/P002951/1), CRD for a studentship award to J.L.H., the
EPSRC U.K. National Mass Spectrometry Facility at Swansea
University and the School of Chemistry at Cardiff University for
This article is protected by copyright. All rights reserved.