Organic & Biomolecular Chemistry
Communication
allenic bromide intermediate B.19 Subsequently, regioselective
hydroazidation to the styryl double bond of the allene takes
place to form the intermediate C,20 which undergoes [3,3]-
sigmatropic rearrangement to produce E-terminal allylic azide
(E)-E via the chair-like transition state D.21 The elimination of
intermediate (E)-E generates species (E)-F and Br− to recycle
this process. Finally, the Schmidt type rearrangement of the
carbocation (E)-F occurs leading to (E)-2 and H+ to complete
this transformation6,17 (Scheme 3). Alternatively, when NH4Br
was not employed in this reaction, the reaction will undergo
the allenyl azide7 pathway (b, Scheme 1) followed by H+ elec-
trophilic addition leading to carbocations F for the subsequent
Schmidt type rearrangement.
A. R. H. Narayan and R. Sarpong, Angew. Chem., Int. Ed.,
2013, 52, 11129; (f) R. A. Watile, S. Biswas and
J. S. M. Samec, Green Chem., 2013, 15, 3176;
(g) C. A. Busacca, B. Qu, E. Farber, N. Haddad, N. Grět,
A. K. Saha, M. C. Eriksson, J.-P. Wu, K. R. Fandrick, S. Han,
N. Grinberg, S. Ma, H. Lee, Z. Li, M. Spinelli, A. Gold,
G. Wang, P. Wipf and C. H. Senanayake, Org. Lett., 2013,
15, 1132; (h) J. Ye, W. Fan and S. Ma, Chem. – Eur. J., 2013,
19, 716; (i) Y. Shao, K. Zhu, Z. Qin, E. Li and Y. Li, J. Org.
Chem., 2013, 78, 5731; ( j) M. Kalek and F. Himo, J. Am.
Chem. Soc., 2012, 134, 19159; (k) M. M. Hansmann,
A. S. K. Hashmi and M. Lautens, Org. Lett., 2013, 15, 3226.
5 (a) L. Ye and L. Zhang, Org. Lett., 2009, 11, 3646;
(b) B. M. Trost and X. Luan, J. Am. Chem. Soc., 2011, 133,
1706; (c) B. M. Trost, X. Luan and Y. Miller, J. Am. Chem.
Soc., 2011, 133, 12824; (d) B. S. L. Collins, M. G. Suero and
M. J. Gaunt, Angew. Chem., Int. Ed., 2013, 52, 5799;
(e) Y.-P. Xiong, M.-Y. Wu, X.-Y. Zhang, C.-L. Ma, L. Huang,
L.-J. Zhao, B. Tan and X.-Y. Liu, Org. Lett., 2014, 16,
1000.
Conclusions
In summary, we developed a novel transformation to alkenyl
nitriles under mild and transition-metal-free conditions via
the direct incorporation of a nitrogen atom into readily
assembled propargylic alcohols. Moreover, NH4Br is disclosed
as an efficient additive to promote the stereoselectivity of this
reaction. This transformation would broaden the toolbox
of chemical reactions and provide a facile entry to alkenyl
nitriles. Further studies on the mechanism and the appli-
cations of this transformation are ongoing in our group.
6 (a) W. Zhou, L. Zhang and N. Jiao, Angew. Chem., Int. Ed.,
2009, 48, 7094; (b) T. Wang and N. Jiao, J. Am. Chem. Soc.,
2013, 135, 11692; (c) F. Chen, X. Huang, Y. Cui and N. Jiao,
Chem. – Eur. J., 2013, 19, 11199.
7 (a) K. Banert and M. Hagedorn, Angew. Chem., Int. Ed.
Engl., 1989, 28, 1675; (b) J. R. Fotsing and K. Banert,
Eur. J. Org. Chem., 2005, 3704.
8 (a) A. J. Fatiadi, in Preparation and Synthetic Applications of
Cyano Compounds, ed. S. Patai and Z. Rappaport, Wiley,
New York, 1983; (b) F. F. Fleming and Q. Wang, Chem. Rev.,
2003, 103, 2035.
Acknowledgements
Financial support from the National Science Foundation of
China (no. 21325206, 21172006), the National Young Top-
notch Talent Support Program, and the Ph.D. Programs
Foundation of the Ministry of Education of China (no.
20120001110013) is greatly appreciated. We thank Xiaoyang
Wang in our group for reproducing the results of 2g and 2u.
9 For some selected methods, see: (a) S. Kojima, T. Fukuzaki,
A. Yamakawa and Y. Murai, Org. Lett., 2004, 6, 3917;
(b) K. Ishihara, Y. Furuya and H. Yamamoto, Angew. Chem.,
Int. Ed., 2002, 41, 2983; (c) K. Yamaguchi, H. Fujiwara,
Y. Ogasawara, M. Kotani and N. Mizuno, Angew. Chem., Int.
Ed., 2007, 46, 3922; (d) C. Qin and N. Jiao, J. Am. Chem.
Soc., 2010, 132, 15893; (e) W. Yin, C. Wang and Y. Huang,
Org. Lett., 2013, 15, 1850; (f) F.-E. Chen, Y.-Y. Li, M. Xu and
H.-Q. Jia, Synthesis, 2002, 1804; (g) Y. Obora, Y. Okabe and
Y. Ishii, Org. Biomol. Chem., 2010, 8, 4071; (h) T. Tomioka,
Y. Takahashi, T. G. Vaughan and T. Yanase, Org. Lett., 2010,
12, 2171; (i) B. A. D’Sa, P. Kisanga and J. G. Verkade, J. Org.
Chem., 1998, 63, 3961; ( j) S. A. DiBiase, B. A. Lipisko,
A. Haag, R. A. Wolak and G. W. Gokel, J. Org. Chem., 1979,
44, 4640; (k) K. Ando, M. Okimura and S. Nagaya, Tetra-
hedron Lett., 2013, 54, 2026; (l) T. Y. Zhang, J. C. O’Toole
and J. M. Dunigan, Tetrahedron Lett., 1998, 39,
1461.
Notes and references
1 For recent reviews on propargylic alcohols, see: (a) Q. Wang
and L. Pu, Synlett, 2013, 1340; (b) E. B. Bauer, Synthesis,
2012, 1131.
2 For recent reviews on the Meyer–Schuster rearrangement,
see: (a) D. A. Engel and G. B. Dudley, Org. Biomol. Chem.,
2009, 7, 4149; (b) V. Cadierno, P. Crochet, S. E. García-
Garrido and J. Gimeno, Dalton Trans., 2010, 39, 4015.
3 (a) A. Erkkila, I. Majander and P. M. Pihko, Chem. Rev.,
2007, 107, 5416; (b) P. Melchiorre, Angew. Chem., Int. Ed.,
2012, 51, 9748.
4 For selected recent examples, see: (a) L. Ye, W. He and 10 (a) Conc. H2SO4 has been widely used in the traditional
L. Zhang, J. Am. Chem. Soc., 2010, 132, 8550; (b) Y. Zhu,
G. Yin, D. Hong, P. Lu and Y. Wang, Org. Lett., 2011, 13,
1024; (c) L. Hao, F. Wu, Z.-C. Ding, S.-X. Xu, Y.-L. Ma,
L. Chen and Z.-P. Zhan, Chem. – Eur. J., 2012, 18, 6453;
(d) M. Egi, M. Umemura, T. Kawai and S. Akai, Angew.
Chem., Int. Ed., 2011, 50, 12197; (e) S. T. Heller, T. Kiho,
Meyer–Schuster rearrangement, see: S. Swaminathan and
K. V. Narayanan, Chem. Rev., 1971, 71, 429; (b) For another
example of using stoichiometric Brønsted acid for the
ionization of propargylic alcohol, see: H. Zhang,
H. Tanimoto, T. Morimoto, Y. Nishiyama and K. Kakiuchi,
Org. Lett., 2013, 15, 5222.
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 4324–4328 | 4327