F. Song, Y. Liu / Journal of Organometallic Chemistry 694 (2009) 502–509
509
53% isolated yield. 1H NMR (CDCl3, Me4Si) d 0.92 (t, J = 6.9 Hz, 3H),
1.30–1.42 (m, 2H), 1.48–1.79 (m, 12H), 2.25 (td, J = 7.8 Hz,
J = 1.2 Hz, 2H), 7.02 (s, 1H); 13C NMR (CDCl3, Me4Si) d 13.70,
22.18, 22.49, 24.59, 24.76, 29.46, 34.89, 86.00, 132.97,
152.44, 173.38; HRMS (EI) for C13H20O2: calc. 208.1463, found
208.1467.
References
[1] (a) T. Murakami, Y. Morikawa, M. Hashimoto, T. Okuno, Y. Harada, Org. Lett. 6
(2004) 157;
3.2.11. 3-Phenyl -1-oxa-spiro[4,5]dec-3-en-2-one (7l)
Column chromatography on silica gel (petroleum ether:ethyl
acetate = 90:1) afforded the title product as white solid in 61% iso-
lated yield. M.p. 107–109 °C; 1H NMR (CDCl3, Me4Si) d 1.36–1.45
(m, 1H), 1.67–1.87 (m, 9H), 7.34–7.43 (m, 3H), 7.57 (s, 1H), 7.84–
7.87 (m, 2H); 13C NMR (CDCl3, Me4Si) d 22.42, 24.56, 34.84,
85.29, 126.97, 128.50, 129.05, 129.67, 130.08, 152.42, 171.13; Anal.
Calc. for C15H16O2: C, 78.92; H, 7.06. Found: C, 78.84; H, 7.12%.
(b) T. Iida, H. Satoh, K. Maeda, Y. Yamamoto, K.-i. Asakawa, N. Sawada, T.
Wada, C. Kadowaki, T. Itoh, T. Mase, S.A. Weissman, D. Tschaen, S. Krska, R.P.
Volante, J. Org. Chem. 70 (2005) 9222;
(c) N.S. Reddy, U. Venkatesham, T.P. Rao, Y. Venkateswarlu, Ind. J. Chem. Sect.
B 39 (2000) 393;
(d) A. Ohsaki, H. Ishiyama, K. Yoneda, J. Kobayashi, Tetrahedron Lett. 44 (2003)
3097;
(e) R.E. Ireland, W.J.J. Thompson, Org. Chem. 44 (1979) 3041;
(f) R.E. Ireland, M.D.J. Varney, Org. Chem. 51 (1986) 635;
(g) J. Gripenberg, Acta Chem. Scand. 35 (1981) 513;
(h) T.-X. Liu, Crop Prot. 23 (2004) 505.
[2] (a) For the synthesis of spirocyclic butenolides, see: P. Langer, U. Albrecht,
Synlett (2002) 1841;
3.2.12. 3-Trimethylsilyl-1-oxa-spiro[4,5]dec-3-en-2-one (7m)
Column chromatography on silica gel (petroleum ether:ethyl
acetate = 150:1) afforded the title product as white solid in 22%
isolated yield. M.p. 131–133 °C; 1H NMR (CDCl3, Me4Si) d 0.24 (s,
9H), 1.35–1.41 (m, 1H), 1.64–1.78 (m, 9H), 7.46 (s, 1H)); 13C
NMR (CDCl3, Me4Si) d ꢀ2.14, 22.46, 24.62, 34.52, 88.38, 132.82,
168.37, 175.14; HRMS (EI) for C12H20O2Si: calc. 224.1233, found
224.1232.
(b) S. Wenderborn, G. Binot, M. Nina, T. Winkler, Synlett (2002) 1683;
(c) A.P. Rauter, J. Figueiredo, M. Ismael, T. Canda, J. Font, M. Figueredo,
Tetrahedron: Asymmetry 12 (2001) 1131;
(d) L.A. Paquette, D.R. Owen, R.T. Bibart, C.K. Seekamp, A.L. Kahane, J.C. Lanter,
M.A. Corral, J. Org. Chem. 66 (2001) 2828;
(e) M. Michaut, M. Santelli, J.-L. Parrain, J. Organomet. Chem. 606 (2000) 93;
(f) H.M.R. Hoffmann, A. Wulferding, Synlett (1993) 415;
(g) A. Orduña, L. Gerardo Zepeda, J. Tamariz, Synthesis (1993) 375;
(h) T.H. Black, T.S. McDermott, G.A. Brown, Tetrahedron Lett. 32 (1991) 6501;
(i) R.M. Ortuno, J. Corbera, J. Font, Tetrahedron Lett. 27 (1986) 1081;
(j) P. Canonne, D. Belanger, G. Lemay, J. Org. Chem. 47 (1982) 3953.
[3] (a) For reviews on gold-catalyzed reactions, see: G. Dyker, Angew. Chem., Int.
Ed. 39 (2000) 4237;
3.2.13. Spirocyclic butenolide (7n)
Column chromatography on silica gel (petroleum ether:ethyl
acetate = 60:1) afforded the title product as light yellow solid in
44% isolated yield. M.p. 119–120 °C;
½
a 2D0
ꢁ
¼ ꢀ51:3 (c 1.035,
(b) G.C. Bond, Catal. Today 72 (2002) 5;
(c) A.S.K. Hashmi, Gold Bull. 36 (2003) 3;
(d) A.S.K. Hashmi, Gold Bull. 37 (2004) 51;
(e) A. Arcadi, S.D. Giuseppe, Curr. Org. Chem. 8 (2004) 795;
(f) A. Hoffmann-Röder, N. Krause, Org. Biomol. Chem. 3 (2005) 387;
(g) R.C.D. Brown, Angew. Chem., Int. Ed. 44 (2005) 850;
(h) A.S.K. Hashmi, Angew. Chem., Int. Ed. 44 (2005) 6990;
(i) A.S.K. Hashmi, G.J. Hutchings, Angew. Chem., Int. Ed. 45 (2006) 7896;
(j) A.S.K. Hashmi, Chem. Rev. 107 (2007) 3180;
CHCl3); HPLC (Chiral AD-H): 98% ee, detected at 254 nm; flow rate
0.5 mL/min; eluent: hexanes/isopropanol = 90:10. 1H NMR (CDCl3,
Me4Si) d 0.77 (s, 3H), 0.93 (s, 3H), 1.17 (s, 3H), 1.21–1.30 (m, 1H),
1.47–1.55 (m, 1H), 1.60–1.70 (m, 1H), 1.75 (d, J = 14.1 Hz, 1H),
1.83–1.93 (m, 2H), 2.39 (dt, J = 13.8 Hz, J = 3.9 Hz, 1H), 7.33–7.43
(m, 3H), 7.55 (s, 1H), 7.86 (dd, J = 7.8 Hz, J = 1.5 Hz, 2H); 13C
NMR (CDCl3, Me4Si) d 9.62, 20.16, 20.35, 27.10, 31.58, 41.73,
44.71, 49.34, 54.16, 94.02, 126.89, 128.45, 128.91, 129.57,
130.49, 151.22, 171.18; Anal. Calc. for C19H22O2: C, 80.82; H,
7.85. Found: C, 80.49; H, 7.85%.
(k) S. Ma, S. Yu, Z. Gu, Angew. Chem., Int. Ed. 45 (2006) 200.
[4] (a) For gold-catalyzed cyclization of (Z)-2-en-4-yn-1-ols, see: A.S.K. Hashmi, L.
Schwarz, J.-H. Choi, T.M. Frost, Angew. Chem. 112 (2000) 2382. Angew. Chem.,
Int. Ed. 39 (2000) 2285;
(b) Y. Liu, F. Song, Z. Song, M. Liu, B. Yan, Org. Lett. 7 (2005) 5409.
[5] Y. Liu, F. Song, S. Guo, J. Am. Chem. Soc. 128 (2006) 11332.
[6] Y. Liu, F. Song, L. Cong, J. Org. Chem. 70 (2005) 6999.
[7] S. Hara, Y. Satoh, H. Ishiguro, A. Suzuki, Tetrahedron Lett. 24 (1983) 735.
[8] (a) A. Cowell, J.K. Stille, J. Am. Chem. Soc. 102 (1981) 4193;
(b) E.J. Corey, J.A. Katzenellenbogen, G.H. Posner, J. Am. Chem. Soc. 89 (1967)
4245;
(c) B. Gabriele, G. Salerno, E. Lauria, J. Org. Chem. 64 (1999) 7687.
[9] In our original paper (Ref. [5]), we reported that no oxidative cleavage reaction
was observed in the absence of Au(I) using dihydrofuran 8a as substrate.
However, during our further study of this reaction, we found that this reaction
indeed occurred without gold catalyst, although a longer reaction time and a
lower yield was obtained. After a series experiments, we found that the
impurities contained in the gas bag may stop the C@C bond cleavage reaction.
We noted that the reported reaction using 8a as substrate without gold
catalyst was carried out using a gas bag as the source of oxygen (only in this
case, we use gas bag, since this reaction was done at the early stage of the
project, all other reactions were carried out using cylinder as oxygen source).
[10] (a) T. Kanno, M. Hisaoka, H. Sakuragi, K. Tokumaru, Bull. Chem. Soc. Jpn. 54
(1981) 2330;
3.2.14. 2-Benzylidene-3-phenyl-1-oxa-spiro[4.5]dec-3-ene (8b)
Column chromatography on silica gel (petroleum ether) affor-
ded the title product as a light yellow solid in 76% isolated yield.
M.p. 112–114 °C; 1H NMR (CDCl3, Me4Si) d 1.37–1.48 (m, 1H),
1.56–1.73 (m, 5H), 1.79–1.93 (m, 4H), 5.42 (s, 1H), 6.31 (s, 1H),
7.09 (tt, J = 7.5 Hz, J = 1.2 Hz, 1H), 7.26–7.32 (m, 2H), 7.34–7.46
(m, 5H), 7.67 (d, J = 7.8 Hz, 2H); 13C NMR (CDCl3, Me4Si) d 22.94,
25.11, 36.02, 91.95, 97.60, 124.81, 127.56, 128.14, 128.21, 128.43,
128.48, 133.32, 136.99, 137.44, 138.73, 158.46; Anal. Calc. for
C22H22O: C, 87.38; H, 7.33. Found: C, 87.16; H, 7.14%.
Acknowledgments
(b) M. Newcomb, N. Miranda, M. Sannigrahi, X. Huang, D. Crich, J. Am. Chem.
Soc. 123 (2001) 6445;
We thank the National Natural Science Foundation of China
(Grant No. 20732008), Chinese Academy of Science, Science and
Technology Commission of Shanghai Municipality (Grant Nos.
08QH14030, 07JC14063) and the Major State Basic Research Devel-
opment Program (Grant No. 2006CB806105) for financial support.
(c) J.H. Horner, E. Taxil, M. Newcomb, J. Am. Chem. Soc. 124 (2002) 5402;
(d) D. Crich, D.-H. Suk, S. Sun, Tetrahedron: Asymmetry 14 (2003) 2861.
[11] Y. Hayashi, M. Takeda, Y. Miyamoto, M. Shoji, Chem. Lett. (2002) 414.
[12] For supported gold-catalyzed stilbene epoxidation via a free-radical chain
mechanism, see: P. Lignier, F. Morfin, S. Mangematin, L. Massin, J.-L. Rousset, V.
Caps, Chem. Commun. (2007) 186.
[13] P. Braunstein, H. Lehner, D. Matt, Inorg. Synth. 27 (1990) 218.
[14] A.R. Katritzky, D. Feng, H. Lang, J. Org. Chem. 62 (1997) 715.
Appendix A. Supplementary material
CCDC 686810 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The