myocardial necrosis, and arrhythmia.4 Compound 6 is a potential
agent for treating anxiety and depression.5 The 2-methyl-3-oxo-
3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid derivative 7
was found to be a potent immunostimulant.6 It is known that
2H-1,4-benzoxazin-3-(4H)-ones bearing a carboxylate and a
benzamidine side chain are fibrinogen receptor antagonists,7 and
compound 8 exhibits a dual antithrombotic action, exhibiting
both thrombin inhibitory and fibrinogen receptor antagonistic
activities.8 Similar biologically active derivatives have been
briefly described in a broader-context review.9
Copper(I)-Catalyzed One-Pot Synthesis of
2H-1,4-Benzoxazin-3-(4H)-ones from
o-Halophenols and 2-Chloroacetamides
Enguang Feng,† He Huang,† Yu Zhou,† Deju Ye,†
Hualiang Jiang,†,‡ and Hong Liu*,†
The Center for Drug DiscoVery and Design, State Key
Laboratory of Drug Research, Shanghai Institute of Materia
Medica, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences, Shanghai, 201203, China, and School
of Pharmacy, East China UniVersity of Science and
Technology, Shanghai, 200237, China
ReceiVed December 29, 2008
FIGURE 1. Structures of 2H-1,4-benzoxazin-3-(4H)-one and some
biologically important derivatives.
We developed an efficient and convenient method for
preparing N-substituted 2H-1,4-benzoxazin-3-(4H)-ones from
2-halophenols via a nucleophilic substitution with 2-chlo-
roacetamides followed by a CuI-catalyzed coupling cycliza-
tion. A broad spectrum of substrates can be effectively
employed to afford the desired products in good yields. Since
this method involves simple reaction conditions, a short
reaction time, and a broad substrate scope, it is particularly
attractive for the efficient preparation of biologically and
medicinally interesting molecules.
Most of the available literature indicates that 2-aminophenols
or substituted 2-nitrophenols are common building blocks for
the synthesis of 2H-1,4-benzoxazin-3-(4H)-ones.10 Recently,
Zuo and co-workers11 used 2-chlorophenols to synthesize
diverse 2H-1,4-benzoxazin-3-(4H)-ones via Smiles rearrang-
ment.12 Although this method is encouraging, its disadvantage
(5) Bertani, B.; Borriello, M.; Bozzoli, A.; Bromidge, S. M.; Granci, E.;
Leslie, C.; Serafinowska, H.; Stasi, L.; Vong, A.; Zucchelli, V.; Serafinowska,
H. G.; Stasi, L. G.; Serfinowska, H. WO2004046124-A1.
(6) Kikelj, D.; Suhadolc, E.; Rutar, A.; Pecar, S.; Puncuh, A.; Urleb, U.;
Leskovsek, V.; Marc, G.; Sollner, M.; Krbavcic, A.; Sersa, G.; Novakovic, S.;
Povsic, L.; Stalc, A. EP695308-A; WO9424152-A.
(7) Stefanic, P.; Simoncic, Z.; Breznik, M.; Plavec, J.; Anderluh, M.; Addicks,
E.; Giannis, A.; Kikelj, D. Org. Biomol. Chem. 2004, 2, 1511.
(8) Stefanic Anderluh, P.; Anderluh, M.; Ilas, J.; Mravljak, J.; Sollner Dolenc,
M.; Stegnar, M.; Kikelj, D. J. Med. Chem. 2005, 48, 3110.
The 2H-1,4-benzoxazin-3-(4H)-ones scaffold has been studied
extensively as an important heterocyclic system for building
natural1 and synthetic compounds.2 Its derivatives are now
known to possess useful biological and medicinal activities
(Figure 1). For example, compound 4, a novel antibacterial
agent, is an inhibitor of bacterial histidine protein kinase.3
Compound 5 is a potential drug for treating heart disease,
(9) Achari, B.; Mandal, S. B.; Dutta, P. K.; Chowdhury, C. Synlett 2004,
2449.
(10) For selected examples, see: (a) Feng, G.; Wu, J.; Dai, W.-M. Tetrahedron
2006, 62, 4635. (b) Hashimoto, Y.; Ishizaki, T.; Shudo, K. Tetrahedron 1991,
47, 1837. (c) Wu, J.; Nie, L.; Luo, J.; Dai, W.-M. Synlett 2007, 17, 2728. (d)
Xing, X.; Wu, J.; Feng, G.; Dai, W.-M. Tetrahedron 2006, 62, 6774. (e) Dai,
W.-M.; Wang, X.; Ma, C. Tetrahedron 2005, 61, 6879. (f) Feng, G.; Wu, J.;
Dai, W.-M. Tetrahedron Lett. 2007, 48, 401. (g) Yuan, Y.; Liu, G.; Li, L.; Wang,
Z.; Wang, L. J. Comb. Chem. 2007, 9, 158. (h) Rybczynski, P. J.; Zeck, R. E.;
Combs, D. W.; Turchi, I.; Burris, T. P.; Xu, J. Z.; Yang, M.; Demarest, K. T.
Bioorg. Med. Chem. Lett. 2003, 13, 235. (i) Matsumoto, Y.; Uchida, A.;
Nakahara, H.; Yanagisawa, I.; Shibanuma, T.; Nohira, H. Chem. Pharm. Bull.
2000, 48, 428.
† Chinese Academy of Sciences.
‡ East China University of Science and Technology.
(1) (a) Zhen, Y. S.; Ming, X. Y.; Yu, B.; Otani, T.; Saito, H.; Yamada, Y.
J. Antibiot. 1989, 42, 1294. (b) Sugimoto, Y.; Otani, T.; Oie, S.; Wierzba, K.;
Yamada, Y. J. Antibiot. 1990, 43, 417.
(2) For a representative review, see: Ilas, J.; Anderluh, P. S.; Dolenc, M. S.;
Kikelj, D. Tetrahedron 2005, 61, 7325–7348.
(3) (a) Frechette, R.; Beach, M. WO9728167-A. (b) Frechette, R.; Weidner-
Wells, M. A.; Weidnerwells, M. A. WO9717333-A.
(4) Hori, M.; Watanabe, I.; Ohtaka, H.; Harada, K.; Maruo, J.; Morita, T.;
Yamamoto, T.; Tsutsui, H. EP719766-A.
(11) Zuo, H.; Meng, L.; Ghate, M.; Hwang, K.-H.; Kweon Cho, Y.;
Chandrasekhar, S.; Raji Reddy, C.; Shin, D.-S. Tetrahedron Lett. 2008, 49, 3827.
(12) (a) Baker, W. R. J. Org. Chem. 1983, 48, 5140. (b) Coutts, I. G. C.;
Southcott, M. R. J. Chem. Soc., Perkin. Trans. 1990, 1, 767.
2846 J. Org. Chem. 2009, 74, 2846–2849
10.1021/jo802818s CCC: $40.75 2009 American Chemical Society
Published on Web 03/03/2009