to the spontaneous dehydration of the ꢀ-hydroxy aldimine
highly functionalized chromans with the creation of three
new stereogenic centers (eq 2).5 The cascade process is
efficiently catalyzed by a commercial diphenylprolinol silyl
ether from simple achiral substances and provides one-pot
access to enantioenriched chromans. Significantly, a novel
activation mode of the chiral amine-catalyzed cascade
process involving formation of aminal 5, which serves as a
nucleophile, rather than a free phenol -OH group for the
Michael addition, has been identified for the first time.
In our exploratory study, we decided to choose 2-hydroxy
cinnamaldehyde 1a and trans-ꢀ-nitrostyrene 2a as substrates
for the proposed cascade oxa-Michael-Michael reaction in
the presence of a chiral amine in CH2Cl2 at rt since the
aldehyde and nitro groups are highly versatile functionalities
in organic transformations (Table 1). Initial optimization
(Scheme 1, eq 1).3a Mechanistically, these reactions share
Scheme 1
.
Organocatalytic, Asymmetric oxa-Michael-Initiated
Cascade Reactions
Table 1. Organocatalytic Asymmetric Cascade
Michael-Michael Reaction of 2-Hydroxy-3-phenyl-propenal
(1a) with trans-ꢀ-Nitrostyrene (2a)a
entry
cat.
additive
% yieldb
% eec
drd
1
2
3
4
5f
6
7
I
none
none
<5
65
78
80
78
77
<5
NDe
96
96
96
98
NDe
4:1
4:1
5:1
6:1
II
II
II
II
III
IV
PhCO2H
NaOAc
NaOAc
NaOAc
NaOAc
97
4:1
NDe
NDe
a Reaction conditions: unless specified, a mixture of 1a (0.12 mmol),
2a (0.10 mmol), additive (0.02 mmol), and a catalyst (0.02 mmol) in CH2Cl2
(0.2 mL) was stirred at rt. b Isolated yields. c Determined by HPLC analysis
(Chiralcel OD-H). d Determined by 1H NMR. e Not determined. f CHCl3
as solvent.
the same pathway, involving the direct conjugate addition
of the free phenol -OH group to the activated enal derived
iminium.
It is noteworthy that chiral chromenes and chromans are
important “privileged” structures found in a myriad of
biologically intriguing molecules.4 In our continuing effort
on the construction of the synthetically useful scaffold with
stereochemical and functional diversity, herein we wish to
disclose an unprecedented organocatalyzed asymmetric
cascade oxa-Michael-Michael reaction, which affords chiral
investigation revealed that the catalyst reactivity varied
significantly among the commonly used chiral secondary
amines probed. It was found that the class of chiral
diarylprolinol silyl ethers was promising for the cascade
process (eq 2).6 No reaction occurred when diphenylprolinol
I was employed (entry 1). Nevertheless, the encouraging
results (65% yield, 96% ee and 4:1 dr, entry 2) were obtained
(3) For examples of organocatalytic asymmetric oxa-Michael-aldol
reaction, see: (a) Li, H.; Wang, J.; E-Nunu, T.; Zu, L.; Jiang, W.; Wei, S.;
Wang, W. Chem. Commun. 2007, 507. (b) Wang, W.; Li, H.; Wang, J.;
Zu, L. J. Am. Chem. Soc. 2006, 128, 10354. (c) Li, H.; Zu, L.-S.; Xie,
H.-X.; Wang, J.; Jiang, W.; Wang, W. Angew. Chem., Int. Ed. 2007, 46,
3732. (d) Sunde´n, H.; Ibrahem, I.; Zhao, G. L.; Eriksson, L.; Co´rdova, A.
Chem.-Eur. J. 2007, 13, 574. (e) Rueping, M.; Sugiono, E.; Merino, E.
Angew. Chem., Int. Ed. 2008, 47, 3046. (f) Liu, K.; Chougnet, A.; Woggon,
W.-D. Angew. Chem., Int. Ed. 2008, 47, 5827. (g) Kotame, P.; Hong, B.-
C.; Liao, J.-H. Tetrahedron Lett. 2009, 50, 704.
(5) There are only a handful of examples of organocatalytic cascade
Michael-Michael reactions: (a) Hoashi, Y.; Yabuta, T.; Yuan, P.; Miyabe,
H.; Takemoto, Y. Tetrahedron 2006, 62, 365. (b) Sriramurthy, V.; Barcan,
G. A.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12928. (c) Sun, X.; Sengupta,
S.; Petersen, J. L.; Wang, H.; Lewis, J. P.; Shi, X.-D. Org. Lett. 2007, 9,
4495. (d) Li, H.; Zu, L.; Xie, H.; Wang, J.; Jiang, W.; Wang, W. Angew.
Chem., Int. Ed. 2007, 46, 3732. (e) Wang, J.; Xie, H.; Li, H.; Zu, L.; Wang,
W. Angew. Chem., Int. Ed. 2008, 47, 4177.
(4) For reviews of chromans: (a) Zeni, G.; Larock, R. C. Chem. ReV.
2004, 104, 2285. (b) Keay, B. A. In ComprehensiVe Heterocyclic Chemistry
II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford,
1996; Vol. 2, p 395. (c) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P.;
Sylvain, C J. Am. Chem. Soc. 2004, 126, 11966, and references cited therein.
(d) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G.-Q.;
Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939, and
references cited therein.
(6) For a review of diaryl prolinol ether catalysis, see: (a) Vicario, J. L.;
Reboredo, S.; Badia, D.; Carrello, L. Angew. Chem., Int. Ed. 2007, 46,
5168. (b) Palomo, C.; Mielgo, A. Angew. Chem., Int. Ed. 2006, 45, 7876.
(c) Mielgo, A.; Palomo, Chem. Asian. J. 2008, 3, 922. And leading
references, see: (d) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen,
K. A. Angew. Chem., Int. Ed. 2005, 44, 794. (e) Hayashi, Y.; Gotoh, H.;
Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212. (f) Chi,
Y.-G.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804.
1628
Org. Lett., Vol. 11, No. 7, 2009