Permethyltitanocene Silanolates and Alcoholates
Organometallics, Vol. 28, No. 6, 2009 1749
stable in solution for several days.7 The systems for Cp′ ) η5-
C5H5 (Cp), OR′ ) OC6H3Me2-2,6 or similar ligands, R′′ ) Me,
and M ) B generated zwitterionic complexes [CpTi(OR′)-
(Me)]+[MeB(C6F5)3]-; however, these were unstable in solution
even at -20 °C, decomposing in two concurrent ways while
eliminating methane and MeB(C6F5)2.8 The system for Cp′ )
Cp*, OR′ ) OSi(CH2CH2SiMePh2)3, R′′ ) Me, and M ) B
also generated the zwitterionic [Cp*Ti(OR′)(Me)]+-
[MeB(C6F5)3]- complex, which decomposed at room temper-
ature with t1/2 ≈ 48 h to give two decomposition products, the
same as in the preceding case.9 Apparently, the lowest stability
for complexes of this type was noticed for the expected
[Cp*Ti(OtBu)(Me)]+[MeB(C6F5)3]- complex, which decom-
posed immediately after mixing its precursors.10 The complete
elimination of isobutene however indicated a different decom-
position pathway.11
The methyl carbon atom was σ-bonded to boron, and two
hydrogen atoms of the methyl group exerted an agostic
interaction14 with the titanium atom, similarly to known
zirconocene zwitterionic complexes.15
The extent of the stabilizing effect of the OR′ group in
Cp′Ti(OR’)R′′2/M(C6F5)3 systems has been discussed in terms
of Brønsted acidity of corresponding POSS silanols16 or a pair
of SIPOSS and Ph3SiOH,6 different silylation rates of POSS
silanols,2c and reactivities of silanols, phenols, or alcohols in
protolysis reactions, e.g., with [Zr(CH2Ph)4],5a [Cp′Ti(CH2-
Ph)3],5b or [Cp*TaMe4],17a or exchange reactions, e.g.,
(tBuO)3SiOH with Ta(OiPr)5,17b or Ph3SiOH with [Ti(OtBu)4],17c
which were based mostly on a qualitative observation.
In this contribution we compare the ability of silanolate
groups (c-C5H9)7Si8O12O (SIPOSS), (tBuO)3SiO, Ph3SiO, and
t
iPr3SiO and BuO, MeO, PhO, and OH groups to act in
π-donation of a lone electron pair from oxygen to the Ti-O
bond. Bis(pentamethylcyclopentadienyl)titanium(III) oxy deriva-
tives are used as model compounds with a uniform structure of
the titanocene moiety for determination of energy of the 1a1 f b2
transition in their electronic absorption spectra, which is the
inherent measure of the effect.18 Crystal structures and density
functional theory (DFT) calculations of the model compounds
support the applicability of the method.
Generally, in the absence of the OR′ ligand, the [Cp*TiMe3]/
[B(C6F5)3] system formed a highly active catalyst for either
polymerization of ethene to a high-molecular polymer or styrene
to syndiotactic polystyrene when its components were mixed
in the presence of monomer using nonpolar solvents.12a When
no monomers were added, the reaction led to the formation of
the anticipated zwitterionic complex [Cp*TiMe2]+[MeB-
(C6F5)3]- in an NMR tube experiment at low temperature;
however, this product rapidly decomposed at room temperature
and was then inactive toward olefins.12b Replacement of one or
two Me groups with alkoxy groups led to a decrease in catalytic
activity, which was attributed to the decreased electrophilicity
of the metal resulting from π-electron donation of the alkoxy
oxygen lone pair to the empty d orbital on the metal.12c The
application of the C6F5 or OC6F5 ligands as poor π-electron
donor OR′ moieties yielded thermally unstable zwitterionic
complexes with B(C6F5)3.12d Thus, the only monocyclopenta-
dienyltitanium complexes of this type characterized by crystal-
lography are the catalytically inactive zwitterionic complexes
Results and Discussion
i
Compounds [Cp*2TiOR′] where R′ is Pr3Si (2), Ph3Si (3),
t
(tBuO)3Si (4), (c-C5H9)7Si8O12 (5), and Bu (6) were prepared
by silanolysis or alcoholysis of the titanium-methylene bond
in singly tucked-in permethyltitanocene [Cp*Ti(III)(η5:η1-
C5Me4CH2)] (1)19 with the respective silanols or tert-butanol
in a practically quantitative reaction (Scheme 1).
(14) (a) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983,
250, 395–408. (b) Braga, D.; Grepioni, F.; Tedesco, E.; Biradha, K.;
Desiraju, G. R. Organometallics 1997, 16, 1846–1856. (c) Thakur, T. S.;
Desiraju, G. R. Chem. Commun. 2006, 552, 555.
10
t
i
[Cp*Ti(OR′)2]+[MeB(C6F5)3]-, where R′ ) Bu or Pr, the
complex containing OiPr ligands being thermally less stable.13
(15) (a) Beck, S.; Prosenc, M. H.; Brintzinger, H.-H.; Goretzki, R.;
Herfert, N.; Fink, G. J. Mol. Catal. A 1996, 111, 67–79. (b) Beck, S.; Lieber,
S.; Schaper, F.; Geyer, A.; Brintzinger, H.-H. J. Am. Chem. Soc. 2001,
123, 1483–1489. (c) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem.
Soc. 1994, 116, 10015–10031.
(16) (a) Dijkstra, T. W.; Duchateau, R.; van Santen, R. A.; Meetsma,
A.; Yap, G. P. A. J. Am. Chem. Soc. 2002, 124, 9856–9864. (b) Liu, H.;
Kondo, S.-I.; Tanaka, R.; Oku, H.; Unno, M. J. Organomet. Chem. 2008,
693, 1301–1308.
(17) (a) Sa´nchez-Nieves, J.; Royo, P. Organometallics 2007, 26, 2880–
2884. (b) Brutchey, R. L.; Lugmair, C. G.; Schebaum, L. O.; Tilley, T. D.
J. Catal. 2005, 229, 72–81. (c) Johnson, B. F. G.; Klunduk, M. C.; Martin,
C. M.; Sankar, G.; Teate, S. J.; Thomas, J. M. J. Organomet. Chem. 2000,
596, 221–225.
(18) Lukens, W. W., Jr.; Smith, M. R., III; Andersen, R. A. J. Am. Chem.
Soc. 1996, 118, 1719–1728.
(5) (a) Duchateau, R.; Abbenhuis, H. C. L.; van Santen, R. A.; Meetsma,
A.; Thiele, S. K.-H.; van Tol, M. F. H. Organometallics 1998, 17, 5663–
5673. (b) Duchateau, R.; Abbenhuis, H. C. L.; van Santen, R. A.; Thiele,
S. K.-H.; van Tol, M. F. H. Organometallics 1998, 17, 5222–5224. (c)
Kim, Y.; Han, Y.; Lee, M. H.; Yoon, S. W.; Choi, K. H.; Song, B. G.; Do,
Y. Macromol. Rapid Commun. 2001, 22, 573–578. (d) Severn, J. R.;
Duchateau, R.; van Santen, R. A.; Ellis, D. D.; Spek, A. L. Organometallics
2002, 21, 4–6. (e) Metcalfe, R. A.; Kreller, D. I.; Tian, J.; Kim, H.; Taylor,
N. J.; Corrigan, J. F.; Collins, S. Organometallics 2002, 21, 1719–1726.
(6) Duchateau, R.; Cremer, U.; Harmsen, R. J.; Mohamud, S. I.;
Abbenhuis, H. C. L.; van Santen, R. A.; Meetsma, A.; Thiele, S. K.-H.;
van Tol, M. F. H.; Kranenburg, M. Organometallics 1999, 18, 5447–5459.
(7) Postigo, L.; Va´zquez, A. B.; Sa´nchez-Nieves, J.; Royo, P.; Herdtweck,
E. Organometallics 2008, 27, 5588–5597.
(8) Phomphrai, K.; Fenwick, A. E.; Sharma, S.; Fanwick, P. E.;
Caruthers, J. M.; Delgass, W. N.; Abu-Omar, M. M.; Rothwell, I. P.
Organometallics 2006, 25, 214–220.
(9) Amo, V.; Andre´s, R.; de Jesu´s, E.; de la Mata, F. J.; Flores, J. C.;
Go´mez, R.; Go´mez-Sal, M. P.; Turner, J. F. Organometallics 2005, 24,
2331–2338.
(10) Pinkas, J.; Varga, V.; C´ısarˇova´, I.; Gyepes, R.; Hora´cˇek, M.; Mach,
K. J. Organomet. Chem. 2007, 692, 2064–2070.
(11) (a) Stoebenau, E. J.; Jordan, R. F. J. Am. Chem. Soc. 2006, 128,
8162–8175. (b) Jordan, A. Y.; Meyer, T. Y. J. Organomet. Chem. 1999,
591, 104–113.
(12) (a) Gillis, D. J.; Tudoret, M.-J.; Baird, M. C. J. Am. Chem. Soc.
1993, 115, 2543–2545. (b) Wang, Q.; Gillis, D. J.; Quyoum, R.; Jeremic,
D.; Tudoret, M.-J.; Baird, M. C. J. Organomet. Chem. 1997, 527, 7–14.
(c) Wang, Q.; Quyoum, R.; Gillis, D. J.; Tudoret, M.-J.; Jeremic, D.; Hunter,
B. K.; Baird, M. C. Organometallics 1996, 15, 693–703. (d) Sarsfield, M. J.;
Ewart, S. W.; Tremblay, T. L.; Roszak, A. W.; Baird, M. C. J. Chem. Soc.,
Dalton Trans. 1997, 3097–3104.
(19) (a) Bercaw, J. E. J. Am. Chem. Soc. 1974, 96, 5087–5095. (b)
Pattiasina, J. W. Ph.D.Thesis, University of Groningen, Groningen, The
Netherlands, 1988; pp 35-77. (c) Pinkas, J.; C´ısaˇrova´, I.; Gyepes, R.;
ˇ
Hora´cˇek, M.; Kubisˇta, J.; Cejka, J.; Goˇmez-Ruiz, S.; Hey-Hawkins, E.;
Mach, K. Organometallics 2008, 27, 5532–5547, and references therein.
(20) (a) Crocker, M.; Herold, R. H. M.; Orpen, A. G.; Overgaag,
M. T. A. J. Chem. Soc., Dalton Trans. 1999, 3791–3804. (b) Moran, P. D.;
Bowmaker, G. A.; Cooney, R. P.; Finnie, K. S.; Bartlett, J. R.; Woolfrey,
J. L. Inorg. Chem. 1998, 37, 2741–2748.
(21) (a) Hora´cˇek, M.; Gyepes, R.; Kubisˇta, J.; Mach, K. Inorg. Chem.
ˇ
Commun. 2004, 7, 155–159. (b) Hora´cˇek, M.; C´ısarˇova´, I.; Cejka, J.; Karban,
J.; Petrusova´, L.; Mach, K. J. Organomet. Chem. 1999, 577, 103–112.
(22) Luinstra, G. A.; ten Kate, L. C.; Heeres, H. J.; Pattiasina, J. W.;
Meetsma, A.; Teuben, J. H. Organometallics 1991, 10, 3227–3237.
(23) (a) Wolff von Gudenberg, D.; Kang, H.-C.; Massa, W.; Dehnicke,
K.; Maichle-Mo¨ssmer, C.; Stra¨hle, J. Z. Anorg. Allg. Chem. 1994, 620, 1719–
1724. (b) Crocker, M.; Herold, R. H. M.; Orpen, A. G. Chem. Commun.
1997, 2411–2412. (c) Menge, W. M. P. B.; Verkade, J. G. Inorg. Chem.
1991, 30, 4628–4631.
(13) Varga, V.; Pinkas, J.; C´ısaˇrova´, I.; Gyepes, R.; Mach, K.; Kubisˇta,
J.; Hora´cˇek, M. Collect. Czech. Chem. Commun. 2008, 73, 1161–1176.