10.1002/cplu.201800510
ChemPlusChem
FULL PAPER
[7] A. George, A. Brandt, K. Tran, S. M. S. N. S. Zahari, D.
Klein-Marcuschamer, N. Sun, N. Sathitsuksanoh, J. Shi, V.
Stavila, R. Parthasarathi, S. Singh, B. M. Holmes, T.
Welton, B. A. Simmons, J. P. Hallett, Green Chem. 2015,
17, 1728-1734.
[25] T. Welton, in Ionic Liquids in Synthesis, 2nd ed. (Eds.: P.
Wasserscheid, T. Welton), Wiley-VCH, Weinheim,
Germany, 2008, pp. 130-175.
[26] L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A.
Salter, T. Welton, Phys. Chem. Chem. Phys. 2003, 5,
2790-2794.
[8] D. R. MacFarlane, M. Forsyth, P. C. Howlett, M. Kar, S.
Passerini, J. M. Pringle, H. Ohno, M. Watanabe, F. Yan, W. [27] S. T. Keaveney, T. L. Greaves, D. F. Kennedy, J. B.
Zheng, S. Zhang, J. Zhang, Nat. Rev. Mater. 2016, 1,
15005.
[9] Q. Yang, Z. Zhang, X.-G. Sun, Y.-S. Hu, H. Xing, S. Dai,
Chem. Soc. Rev. 2018, 47, 2020-2064.
[10] K. S. Egorova, E. G. Gordeev, V. P. Ananikov, Chem. Rev.
2017, 117, 7132-7189.
[11] A. Berthod, M. J. Ruiz-Ángel, S. Carda-Broch, J.
Chromatogr. A 2018, 1559, 2-16.
Harper, J. Phys. Chem. B 2016, 120, 12687-12699.
[28] Whilst their may be synergistic interactions involving the
acetonitrile and the ionic liquid, the simplest argument is
that the changes in interactions in solution on increasing
the proportion of ionic liquid to the reaction mixture are
due to the introduction of interactions involving the ionic
liquid.
[29] a) B. Y. W. Man, J. M. Hook, J. B. Harper, Tetrahedron
Lett. 2005, 46, 7641-7645; b) H. M. Yau, S. A. Barnes, J.
M. Hook, T. G. A. Youngs, A. K. Croft, J. B. Harper, Chem.
Commun. 2008, 3576-3578; c) S. T. Keaveney, B. P.
White, R. S. Haines, J. B. Harper, Org. Biomol. Chem.
2016, 14, 2572-2580.
[30] The comparatively small changes in the rate constants
observed means that activation parameters do not
necessarily distinguish the origin of the rate constant
change, particularly given the uncertainties in activation
parameter data.
[31] N. S. Isaacs, Physical Organic Chemistry, 2nd ed.,
Addison Wesley Longman Limited, Harlow, 1998.
[32] Similar mole fraction dependence data is available for the
chlorides 6b,d,g and the iodides 7b,d,g. The trends in
data are similar in all cases (see Supporting Information,
Figures S2-S6).
[12] M. Amde, J.-F. Liu, L. Pang, Environ. Sci. Technol. 2015,
49, 12611-12627.
[13] a) T. Welton, Chem. Rev. 1999, 99, 2071-2083; b) P.
Wasserscheid, W. Keim, Angew. Chem., Int. Ed. 2000, 39,
3772-3789; c) J. P. Hallett, T. Welton, Chem. Rev. 2011,
111, 3508-3576; d) R. L. Vekariya, Journal of Molecular
Liquids 2017, 227, 44-60.
[14] M. B. Smith, J. March, March's Advanced Organic
Chemistry, Wiley-Interscience, New York, 2001.
[15] a) H. M. Yau, S. T. Keaveney, B. J. Butler, E. E. L. Tanner,
M. S. Guerry, S. R. D. George, M. H. Dunn, A. K. Croft, J.
B. Harper, Pure Appl. Chem. 2013, 85, 1979-1990; b) S. T.
Keaveney, R. S. Haines, J. B. Harper, in Encyclopedia of
Physcial Organic Chemistry, Vol. 2 (Ed.: U. Wille), Wiley,
2017; c) A. Gilbert, R. S. Haines, J. B. Harper, in Elsevier
Reference Modules in Chemistry, Molecular Sciences and
Chemical Engineering (Ed.: J. Reedijk), Elsevier, Waltham,
MA, 2018, doi.org/10.1016/B978-0-12-409547-2.14212-X;
d) R. R. Hawker, R. S. Haines, J. B. Harper, Adv. Phys.
Org. Chem. 2018, 52, in press.
[16] a) R. R. Hawker, R. S. Haines, J. B. Harper, Org. Biomol.
Chem. 2018, 16, 3453-3463; b) R. R. Hawker, R. S.
Haines, J. B. Harper, Chem. Commun. 2018, 54, 2296-
2299; c) R. R. Hawker, R. S. Haines, J. B. Harper, J. Phys.
Org. Chem., In press.
[33] a) Given this lack of additivity of substituent effects, this
reagent was not used in subsequent Hammett analysis; b)
Once again, the physicochemical properties of the solvent
system will change with the composition of the mixture,
however they cannot be used to explain the changes seen.
[34] Similar but limited data for the chloride 6 and iodide 7
series are presented in the Supporting Information, Figures
S14-S16 and Tables S26-S27.
[35] C. Costentin, P. Hapiot, M. Médebielle, J.-M. Savéant, J.
[17] H. M. Yau, A. G. Howe, J. M. Hook, A. K. Croft, J. B.
Harper, Org. Biomol. Chem. 2009, 7, 3572-3575.
[18] a) H. M. Yau, A. K. Croft, J. B. Harper, Faraday Discuss.
2012, 154, 365-371; b) K. S. Schaffarczyk McHale, R. R.
Hawker, J. B. Harper, New J. Chem. 2016, 40, 7437-7444.
[19] E. E. L. Tanner, H. M. Yau, R. R. Hawker, A. K. Croft, J. B.
Harper, Org. Biomol. Chem. 2013, 11, 6170-6175.
[20] a) S. T. Keaveney, K. S. Schaffarczyk McHale, R. S.
Haines, J. B. Harper, Org. Biomol. Chem. 2014, 12, 7092-
7099; b) S. T. Keaveney, R. S. Haines, J. B. Harper, Org.
Biomol. Chem. 2015, 13, 3771-3780.
[21] a) R. Bini, C. Chiappe, C. S. Pomelli, B. Parisi, J. Org.
Chem. 2009, 74, 8522-8530; b) X. Mu, N. Jiang, C. Liu, D.
Zhang, J. Phys. Chem. A 2017, 121, 1133-1139.
[22] S. T. Keaveney, D. V. Francis, W. Cao, R. S. Haines, J. B.
Harper, Aust. J. Chem. 2014, 68, 31-35.
[23] It should be noted that due to vast differences in absolute
rate constants, these mole fraction dependence data were
determined at different temperatures. Whilst changing
temperature might be expected to subtly change the
magnitude of the effects, the gross effects seen would be
the same.
[24] S. T. Keaveney, K. S. Schaffarczyk Mc Hale, J. W.
Stranger, B. Ganbold, W. S. Price, J. B. Harper,
ChemPhysChem 2016, 17, 3853–3862.
Am. Chem. Soc. 1999, 121, 4451-4460.
[36] It should be noted that there was no change in the rate
constant on addition of radical initiators or radical inhibitors.
Irrespective, the uncertainty in the underlying mechanism
meant it was not considered further
[37] Similar but limited data for the chloride 6 and iodide 7
series are presented in the Supporting Information, Figures
S14-S16 and Tables S26-S27.
[38] The latter effect has been shown for nucleophilic aromatic
substitution processes, see references 16a and 39.
[39] R. R. Hawker, M. J. Wong, R. S. Haines, J. B. Harper, Org.
Biomol. Chem. 2017, 15, 6433-6440.
[40] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory
Chemicals, Seventh ed., Butterworth-Heinemann, Oxford,
2013.
[41] a) S. M. Johnson, S. Connelly, I. A. Wilson, J. W. Kelly, J.
Med. Chem. 2008, 6348-6358; b) P. Dhankher, T. D.
Sheppard, Synlett 2014, 381-384; c) B. J. Littler, M.
Aizenberg, N. B. Ambhaikar, T. A. Blythe, T. T. Curran, V.
Dvornikovs, Y. C. Jung, V. Jurkauskas, E. C. Lee, A. R.
Looker, H. Luong, T. A. Martinot, D. B. Miller, B. J.
Neubert-Langille, P. A. Otten, P. J. Rose, P. L. Ruggiero,
Org. Process Res. Dev. 2015, 270-283; d) W. Li, C. Yang,
G.-L. Gao, W. Xia, Synlett 2016, 1391-1396.
[42] K. K. Mayer, S. Prior, W. Wiegrebe, Montash. Chem.
Chem. Mon. 1986, 511.
This article is protected by copyright. All rights reserved.