I. L. Fedushkin et al.
FULL PAPER
(CH3)2], 2.55–2.27 [m, 2 H, CH2(CH2)2CH3], 2.68 [sept, J = 6.8 Hz,
1 H, CH(CH3)2], 1.46 [d, J = 7.0 Hz, 3 H, CH(CH3)CH3], 1.35 [d, J
= 7.0 Hz, 3 H, CH(CH3)CH3] ppm. 13C NMR (50 MHz, C4D8O,
20 °C): δ = 192.8, 150.9, 148.3, 148.2, 143.8, 142.8, 139.9, 138.7,
= 6.8 Hz, 3 H, CH(CH3)CH3], 1.26 [d, J = 6.8 Hz, 3 H, CH(CH3)- 131.8, 130.2, 128.8, 127.9, 127.0, 125.4, 124.5, 124.4, 124.1, 123.5,
CH3], 1.23 [d, J = 7.0 Hz, 3 H, CH(CH3)CH3], 1.15 [d, J = 6.8 Hz,
3 H, CH(CH3)CH3], 0.85 [d, J = 6.8 Hz, 3 H, CH(CH3)CH3], 0.62
[d, J = 6.8 Hz, 3 H, CH(CH3)CH3], –0.21 [d, J = 6.8 Hz, 3 H,
CH(CH3)CH3] ppm.
122.7, 79.3, 68.1, 67.7, 66.8, 52.7, 30.8, 30.3, 30.0, 29.3, 29.0, 28.8,
28.1, 26.3, 26.0, 25.6, 25.2, 24.8, 24.6, 24.4, 24.2, 23.9, 20.3, 14.1,
13.9, 8.9 ppm.
Single Crystal X-ray Structure Determination of 4 and 6: The data
of 4 were collected with a Siemens SMART CCD diffractometer
(graphite-monochromated Mo-Kα radiation, ω-scan technique, λ =
0.71073 Å) at 100 K. The data of 6 were collected using an Xcali-
bur S Sapphire diffractometer (Oxford Diffraction) at 150 K. The
structures of 4 and 6 were solved by direct methods using the
SHELXS-97[18] and SIR-2004 programs,[19] respectively, and were
[(L)ZnN(SiMe3)2] (5): A solution of nBuLi in hexane (2.74 ,
0.8 mL, 2 mmol) was added to a suspension of 1 (1.00 g, 2 mmol)
in Et2O (20 mL) while stirring. The colour of the mixture instantly
changed from orange to blue. After addition of ZnCl2 (0.27 g,
2 mmol) the mixture was stirred at 40 °C for 30 min. The precipi-
tated LiCl was then filtered off. A solution of KN(SiMe3)2 (0.4 g,
2 mmol) in Et2O (10 mL) was added to the remaining clear solution
of 4 that was formed in this reaction, and the mixture was stirred
for a few minutes. After evaporation of the solvent in vacuo and
dissolution of the residue in hexane (20 mL) the mixture was heated
for 30 min at 60 °C, and then filtered off from the precipitated KCl.
Concentration of the hexane solution causes the crystallization of
compound 5 (0.76 g, 53%) as brown crystals, m.p. 173 °C. IR (Nu-
refined on F2 by
a full-matrix least-squares method using
SHELXL-97.[20] All non-hydrogen atoms were refined anisotropi-
cally. The hydrogen atoms were placed in calculated positions using
a riding model. The program SADABS[21] was used to perform
area-detector scaling and absorption corrections.
CCDC-660725 (for 4) and -660726 (for 6) contain the supplemen-
tary crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
jol): ν = 1639 (s), 1615 (w), 1589 (m), 1491 (w), 1463 (s), 1428 (w),
˜
1378 (w), 1363 (s), 1347 (m), 1310 (w), 1254 (m), 1243 (w), 1198
(s), 1190 (w), 1180 (w), 1138 (w), 1109 (m), 1046 (w), 1034 (m), 985
(s), 966 (w), 925 (w), 917 (w), 883 (s), 859 (w), 849 (w), 833 (m),
818 (w), 802 (w), 782 (m), 757 (m), 670 (s), 648 (w), 614 (m) cm–1.
1H NMR (200 MHz, C6D6, 20 °C): δ = 7.36–6.90 (m, 9 H, CH
arom.), 6.73 (pst, J = 8.0 Hz, 1 H, CH arom.), 6.53 (d, J = 7.0 Hz,
1 H, CH arom.), 6.33 (d, J = 6.8 Hz 1 H, CH arom), 4.75 [sept, J
= 7.0 Hz, 1 H, CH(CH3)2], 3.33 [sept, J = 6.8 Hz, 1 H, CH-
(CH3)2], 3.31 [sept, J = 6.8 Hz, 1 H, CH(CH3)2], 2.93 [td, J = 12.5,
1 H, J = 4.8 Hz, CH2(CH2)2CH3], 2.85 [sept, J = 6.8 Hz, 1 H,
CH(CH3)2], 2.41 [td, J = 12.5, 1 H, J = 3.3 Hz, CH2(CH2)2CH3],
1.61 [d, J = 7.0 Hz, 3 H, CH(CH3)CH3], 1.55 [d, J = 7.0 Hz, 3 H,
CH(CH3)CH3], 1.37 [d, J = 6.8 Hz, 3 H, CH(CH3)CH3], 1.34 [d, J
= 6.8 Hz, 3 H, CH(CH3)CH3], 1.05 [d, J = 6.8 Hz, 3 H, CH(CH3)-
CH3], 0.99 [d, J = 6.8 Hz, 3 H, CH(CH3)CH3], 0.85 [d, J = 6.8 Hz,
3 H, CH(CH3)CH3], 0.60 [t, J = 7.4 Hz, 3 H, CH2(CH2)2CH3], 0.18
[s, 18 H, Si(CH3)3], –0.13 [d, J = 6.8 Hz, 3 H, CH(CH3)CH3] ppm.
Acknowledgments
This work was supported by the Russian Foundation for Basic Re-
search (grant no. 07-03-00545 and 06-03-32728), the Alexander von
Humboldt Foundation (to I. L. F.), the Fonds der Chemischen In-
dustrie, and the Deutsche Forschungsgemeinschaft (to H. S.).
[1] C. Elschenbroich, Organometallics, 3rd ed., Wiley-VCH,
Weinheim, 2006, p. 74.
[2] P. Knochel, N. Millot, A. L. Rodriguez, Ch. E. Tucker, Prepa-
ration and applications of functionalized organozinc compounds,
in Organic Reactions, John Wiley & Sons, New York, 2001, 58,
417–731.
[3] E. Negishi, Bull. Chem. Soc. Jpn. 2007, 80, 233–257.
[4] a) N. Oguni, T. Omi, Tetrahedron Lett. 1984, 25, 2823–2826;
b) R. Noyori, M. Kitamura, Angew. Chem. 1991, 103, 34–55;
Angew. Chem. Int. Ed. Engl. 1991, 30, 49–69; c) K. Soai, S.
Niwa, Chem. Rev. 1992, 92, 833–856; d) R. Noyori, Asymmetric
Catalysis in Organic Synthesis, John Wiley & Sons, New York,
1994; e) M. Yamakawa, R. Noyori, Organometallics 1999, 18,
128–133.
[5] a) A. Zulys, M. Dochnahl, D. Hollmann, K. Loehnwitz, J. S.
Herrmann, P. W. Roesky, S. Blechert, Angew. Chem. 2005, 117,
7972–7976; Angew. Chem. Int. Ed. 2005, 44, 7794–7798; b) M.
Dochnahl, J. W. Pissarek, S. Blechert, K. Loehnwitz, P. W. Roe-
sky, Chem. Commun. 2006, 3405–3407; c) N. Meyer, K. Loehn-
witz, A. Zulys, P. W. Roesky, M. Dochnahl, S. Blechert, Orga-
nometallics 2006, 25, 3730–3734.
[6] a) H. R. Kricheldorf, C. Boettcher, J. Macromol. Sci., Pure
Appl. Chem. 1993, A30, 441–448; b) M. Cheng, A. B. Attygalle,
E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 1999, 121,
11583–11584; c) M. H. Chisholm, N. W. Eilerts, J. C. Huffman,
S. S. Iyer, M. Pacold, K. Phomphrai, J. Am. Chem. Soc. 2000,
122, 11845–11854; d) B. M. Chamberlain, M. Cheng, D. R.
Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am.
Chem. Soc. 2001, 123, 3229–3238; e) M. H. Chisholm, J. Gal-
lucci, K. Phomphrai, Inorg. Chem. 2002, 41, 2785–2794; f)
C. K. Williams, L. E. Breyfogle, S. K. Choi, W. Nam, V. G.
Young Jr, M. A. Hillmyer, W. B. Tolman, J. Am. Chem. Soc.
2003, 125, 11350–11359; g) D. Chakraborty, E. Y.-X. Chen, Or-
ganometallics 2003, 22, 769–774; h) M. P. Coles, P. B. Hitch-
cock, Eur. J. Inorg. Chem. 2004, 2662–2672; i) M. H. Chisholm,
[(L)Zn-nBu] (6): ZnCl2 (0.19 g, 1.39 mmol) was added to a solution
of compound 3 (0.93 g, 0.7 mmol) in Et2O (20 mL). The reaction
mixture was stirred at 40 °C until the solution turned red-orange.
After evaporation of the solvent in vacuo the remaining residue
was dissolved in hot hexane (25 mL). The insoluble LiCl was fil-
tered off. Compound 6 was isolated (0.58 g, 61%) as red-orange
crystalline needles from the concentrated (7 mL) hexane solution,
m.p. 154 °C. C44H58N2Zn (680.29): calcd. C 77.61, H 8.53; found
C 77.47, H 8.30. IR (Nujol): ν = 2723 (w), 1927 (w), 1638 (s), 1588
˜
(m), 1427 (s), 1361 (m), 1364 (m), 1311 (m), 1254 (s), 1204 (m),
1190 (w), 1160 (w), 1136 (w), 1104 (w), 1059 (m), 1031 (m), 833
(s), 801 (s), 778 (vs), 757 (s), 722 (m) cm–1. 1H NMR (200 MHz,
C4D8O, 20 °C): δ = 7.97 (d, J = 8.3 Hz, 1 H, CH arom.), 7.67 (d,
J = 8.3 Hz, 1 H, CH arom.), 7.44–7.22 (m, 6 H, CH arom.), 7.08
(pst, J = 7.6 Hz, 1 H, CH arom.), 6.85 (dd., J = 7.5, J = 1.5 Hz, 1
H, CH arom.), 6.51 (d, J = 7.0 Hz, 1 H, CH arom.), 6.09 (d, J =
7.0 Hz, 1 H, CH arom.), 4.60 [sept, J = 7.0 Hz, 1 H, CH(CH3)2],
3.30 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], 3.04 [sept, J = 7.0 Hz, 1
H, CH(CH3)2], 2.79 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], 2.57 [td, J
= 12.8, J = 4.8 Hz, 1 H, CH2(CH2)2CH3], 2.15 [td, J = 12.8, J =
3.5 Hz, 1 H, CH2(CH2)2CH3], 1.49 [d, J = 7.0 Hz, 3 H, CH(CH3)-
CH3], 1.37 [d, J = 7.0 Hz, 3 H, CH(CH3)CH3], 1.25–1.09 [m, 9 H,
CH(CH3)CH3], 0.80 [d, J = 7.0 Hz, 3 H, CH(CH3)CH3], 0.69 [d, J
= 7.0 Hz, 3 H, CH(CH3)CH3], 0.69 [t, J = 7.3 Hz, 3 H, CH2-
(CH2)2CH3], 0.47 [t, J = 7.7 Hz, 2 H, CH2(CH2)2CH3], 0.03 [d, J
488
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 483–489