A. Guijarro et al.
7.93 (apparent d, J=8.6 Hz, 1H; CHarom), 8.16 ppm (apparent d, J=
8.5 Hz, 1H; CHarom); 13C NMR (75 MHz, CDCl3): d=14.07 (CH3), 22.61
(CH3CH2), 25.57, 28.62, 29.24, 29.51, 29.61 (5CH2), 31.82 (CaromCH2),
33.56 (CH2CH2CH), 38.21 (CH), 122.15, 123.68, 124.49, 125.35, 126.12,
126.82, 126.89, 127.22, 127.90, 128.59 (10CHarom), 130.98, 131.05, 132.33,
133.23, 134.02, 141.03 ppm (6Carom); IR (film): n=3059, 2924, 2853,
1462, 1377, 816, 757 cmÀ1; MS (70 eV, EI): m/z (%): 344 (1.16) [M+2H]+,
343 (6.40) [M+1H]+, 342 (22.85) [M]+, 230 (19), 229 (100), 228 (36), 43
(12), 41 (11); HR-MS: m/z calcd for C26H30: 342.2348; found 342.2362.
[5] M. Yus in The Chemistry of Organolithium Compounds, Part 2, Vol.
1 (Eds.: Z. Rappoport, I. Marek), Wiley, Chichester, 2004, pp. 657–
747.
[7] R. D. Chambers, S. R. James in Comprehensive Organic Chemistry,
Vol 1 (Eds.: D. Barton, W. D. Ollis), Pergamon Press, New York,
1979, p. 527.
[9] R. P. Herrera, A. Guijarro, M. Yus, Tetrahedron Lett. 2001, 42,
3455–3458.
[16] a) A. N. Sidorov, Opt. Spektrosk. 1979, 47, 678–683 (Chem. Abstr.
1979, 92:110107; b) J. P. Devlin, J. S. McKennis, C. Thornton, J. C.
6-(5-Hexenyl)-5,6-dihydrochrysene (7b): Rf =0.28 (hexane); 1H NMR
(300 MHz, CDCl3): d=1.14–1.56 (m, 6H; 3CH2), 1.86–2.04(m, 2H;
CHCH2CH2), 2.92–3.05 (m, 1H; CH2CHCH2), 3.20 (dd, J=15.8, 5.6 Hz,
1H; CaromCHHCH), 3.50 (dd, J=15.8, 3.6 Hz, CaromCHHCH), 4.80–4.97
(m, 2H; CH2=CH), 5.72 (ddt, J=17.0, 10.1, 6.7 Hz, 1H; CH=CH2), 7.21–
7.29 (m, 2H; 2CHarom), 7.30–7.39 (m, 1H; CHarom), 7.42- 7.56 (m, 2H;
CHarom) 7.75–7.89 (m, 3H; CHarom), 7.92 (apparent d, J=8.6 Hz, 1H;
CHarom), 8.15 ppm (apparent d, J=8.3 Hz, 1H; CHarom); 13C NMR
(75 MHz, CDCl3): d=27.01 (CH2), 28.60 (CaromCH2CH), 28.83, 33.37 (2
CH2), 33.63 (CHCH2CH2), 38.18 (CH2CHCH2), 114.23 (CH2=CH),
122.16, 123.67, 124.51, 125.37, 126.15, 126.86, 126.95, 127.24, 127.90,
128.61 (10CHarom), 130.95, 130.98, 132.33, 133,23, 134.01 (5Carom),
138.88 (CH=CH2), 140.91 ppm (Carom); IR (film): n=3062, 2974, 2927,
2853, 1639, 1597, 1486, 1461, 1449, 1430, 1378, 1257, 1030, 993, 909, 860,
815, 762, 736 cmÀ1
;
MS: m/z (%): 316 (0.01) [M+4H]+, 315 (0.13)
[M+3H]+, 314(1.55) [ M+2H]+, 313 (12.36) [M+1H]+, 312 (48.01) [M]+,
230 (19), 229 (100), 228 (44), 226 (12); HR-MS: m/z calcd for C24H24
:
312.1878; found 312.1883.
[19] a) P. Hohenberg, W. Kohn, Phys. Rev. B 1964, 136, 864–871; b) W.
Kohn, L. Sham, J. Phys. Rev. A 1965, 140, 1133–1138.
[21] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys.
6-(5-Cyclopentylmethyl)-5,6-dihydrochrysene (7c): Rf =0.30 (hexane);
1H NMR (400 MHz, CDCl3): d=0.94–1.13 (m, 2H; 2CHH of cyclopen-
tyl), 1.32–1.61 (m, 6H; 4CHH of cyclopentyl, CHCH2CH
1.73 (m, 1H; CHH of cyclopentyl), 1.75–1.86 (m, 2H; CHH of cyclopen-
tyl, CH2CH(CH2)2), 3.02–3.11 (m, 1H; CH2CH(Carom)CH2), 3.21 (dd, J=
ACHTRE(UNG CH2)2), 1.62–
A
ACHTREUNG
15.8, 5.7 Hz, 1H; CaromCHHCH), 3.52 (dd, J=15.9, 3.0 Hz, 1H;
CaromCHHCH), 7.23–7.31 (m, 2H; CHarom), 7.30–7.38 (m, 1H; CHarom),
7.42–7.49 (m, 1H; CHarom), 7.49–7.58 (m, 1H; CHarom), 7.77–7.88 (m, 3H;
CHarom), 7.93 (apparent d, J=8.6 Hz, 1H; CHarom), 8.15 ppm (app. d, J=
8.6 Hz, 1H; CHarom); 13C NMR (100 MHz, CDCl3): d= 25.16, 25.18 (2
CH2 of cyclopentyl), 28.83 (CaromCH2CH), 32.69, 32.86 (2CH2 of cyclo-
pentyl), 37.09 (CH2CHACHTREUNG(Carom)CH2), 37.40 (CH2CHACHTRE(UGN CH2)2), 40.21 (CH2 of
cyclopentyl), 122.14, 123.70, 124.55, 125,36, 126.12, 126.82, 126.90, 127.23,
127.85, 128.61 (10CHarom), 130.95, 131.05, 132.37, 133.22, 133.98,
141.12 ppm (6Carom); IR (film): n=3061, 3035, 3021, 2948, 2866, 1485,
1469, 1449, 1429, 1378, 908, 817, 762, 734 cmÀ1; MS: m/z (%): 315 (0.10)
[M+3H]+, 314(1.21) [ M+2H]+, 313 (9.58) [M+1H]+, 312 (36.83) [M]+,
230 (19), 229 (100), 228 (43), 226 (11); HR-MS: m/z calcd for C24H24
:
b) P. W. Rabideau, R. G. Harvey, J. B. Stothers, Chem. Commun.
1969, 1005–1006.
[28] R. G. Harvey, C. C. Davis, J. Org. Chem. 1969, 34, 3007–3009.
[29] R. G. Lawer, C. V. Ristagno, J. Am. Chem. Soc. 1969, 91, 1534–
1535.
312.1878; found 312.1882.
The synthesis of fluorinated starting materials and full description of the
remaining compounds 1a–c to 12a can be found in the Supporting Infor-
mation.
[30] R. H. Cox, H. W. Terry, Jr., L. W. Harrison, Tetrahedron Lett. 1971,
12, 4815–4818.
Acknowledgements
This work was generously supported by the Spanish Ministerio de Educa-
ción y Ciencia [grant no. CTQ2004–01261 and Consolider Ingenio 2010
(CSD2007—00006)] and the Generalitat Valenciana (grant no.
GRUPOS05/052 and GV07/36). C.M. and R.P.H. thank the University of
Alicante for fellowships. We also thank Medalchemy S.L. and Chemetall
GmbH for gifts of chemicals.
[32] N. Ahmad, C. Cloke, I. K. Hatton, N. J. Lewis, J. MacMillan, J.
[34] K. Müllen, W. Huber, G. Neumann, C. Schnieders, H. Unterberg, J.
Am. Chem. Soc. 1985, 107, 801–807.
[37] C. Tintel, J. Cornelisse, J. Lugtenburg, Recl. Trav. Chim. Pays-Bas
1983, 102, 231–235.
[38] C. Tintel, J. Cornelisse, J. Lugtenburg, Recl. Trav. Chim. Pays-Bas
1983, 102, 14–20.
[2] M. Yus; R. P. Herrera, A. Guijarro, Chem. Eur. J. 2002, 8, 2574–
2584.
[39] R. G. Harvey, P. W. Rabideau, Tetrahedron Lett. 1970, 11, 3695–
3698.
10106
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 10096 – 10107