ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Asymmetric Access to the Smallest
Enolate Intermediate via Organocatalytic
Activation of Acetic Ester
Shaojin Chen,† Lin Hao,† Yuexia Zhang, Bhoopendra Tiwari, and Yonggui Robin Chi*
Division of Chemistry & Biological Chemistry, School of Physical & Mathematical
Sciences, Nanyang Technological University, Singapore 637371, Singapore
Received October 6, 2013
ABSTRACT
An NHC-catalyzed activation of acetic esters to afford enolate intermediates is disclosed. The catalytically generated triazolium enolate
intermediates serve as two-carbon nucleophiles that undergo highly enantioselective reactions with enones and R,β-unsaturated imines to give
R-unsubstituted δ-lactones and lactams, respectively.
The asymmetric catalytic generation of chiral enolates
and their equivalents via metal1 or organic molecule-based
catalysts2 is a basic strategy in organic synthesis. Chiral
enolate equivalents from acetic esters and their derivatives,
the smallest enolate intermediates, have attracted much
attention as two-carbon nucleophilic building blocks in
synthesis. Under organic catalysis, several approaches
have been developed for the catalytic generation of chiral
enolate intermediates from acetaldehyde and its derivatives
(Scheme 1). With a chiral amine catalyst, the List, Hayashi,
and Maruoka groups reported the use of acetaldehyde as
two-carbon building blocks via enamine intermediates
(Scheme 1a).3 With cinchona alkaloid catalysts, the groups
of Wynberg and Nelson successively reported the activation
of acetyl chloride to generate enolate intermediates that
underwent reactions with aldehydes to afford β-lactones
(Scheme 1b).4 N-Heterocyclic carbenes (NHC)5ꢀ8 have
also been utilized in the catalytic generation of enolate
from acetaldehyde derivatives. Bode and co-workers used
† These authors contributed equally.
(1) For selected examples, see: (a) Thorhauge, J.; Johannsen, M.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 1998, 37, 2404. (b) Yoshikawa,
N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem.
Soc. 1999, 121, 4168. (c) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000,
122, 12003. (d) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem.
Soc. 2002, 124, 11240. (e) Evans, D. A.; Downey, C. W.; Hubbs, J. L.
J. Am. Chem. Soc. 2003, 125, 8706.
(4) (a) Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. 1982, 104,
166. (b) Wynberg, H.; Staring, E. G. J. J. Org. Chem. 1985, 50, 1977. (c)
Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352. (d)
Xu, X.; Wang, K.; Nelson, S. G. J. Am. Chem. Soc. 2007, 129, 11690.
(5) R,β-Unsaturated enals are not suitable substrates for the genera-
tion of R-unsubstituted enolates (e.g., acetic enolates). (a) He, M.;
Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418. (b)
Burstein, C.; Tschan, S.; Xie, X. L.; Glorius, F. Synthesis 2006, 2418. (c)
Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem.,
Int. Ed. 2007, 46, 3107. (d) Wadamoto, M.; Phillips, E. M.; Reynolds,
T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 10098. (e) Li, Y.;
Wang, X. Q.; Zheng, C.; You, S. L. Chem. Commun. 2009, 5823. (f)
Kaeobamrung, J.; Kozlowski, M. C.; Bode, J. W. Proc. Natl. Acad. Sci.
U.S.A. 2010, 107, 20661. (g) Fang, X. Q.; Chen, X. K.; Chi, Y. R. Org.
Lett. 2011, 13, 4708. (h) Fu, Z.; Sun, H.; Chen, S.; Tiwari, B.; Li, G.; Chi,
Y. R. Chem. Commun. 2013, 49, 261.
(2) For selected examples, see: (a) List, B.; Lerner, R. A.; Barbas,
C. F., III. J. Am. Chem. Soc. 2000, 122, 2395. (b) Sakthivel, K.; Notz, W.;
Bui, T.; Barbas, C. F., III. J. Am. Chem. Soc. 2001, 123, 5260. (c)
Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
6798. (d) Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 1790. (e) Hayashi, Y.;
Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K. Angew.
Chem., Int. Ed. 2003, 42, 3677. (f) Tang, Z.; Jiang, F.; Yu, L.; Cui, X.;
Gong, L.; Mi, A.; Jiang, Y.; Wu, Y. J. Am. Chem. Soc. 2003, 125, 5262.
€
(g) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 44,
ꢀ
861. (h) Rueping, M.; Sunden, H.; Hubener, L.; Sugiono, E. Chem.
Commun. 2012, 48, 2201.
(3) (a) Yang, J.; Chandler, C.; Stadler, M.; Kampen, D.; List, B.
ꢀ ^
Nature 2008, 452, 453. (b) Garcıa-Garcıa, P.; Ladepeche, A.; Halder, R.;
List, B. Angew. Chem., Int. Ed. 2008, 47, 4719. (c) Hayashi, Y.; Itoh, T.;
Aratake, S.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 2082. (d)
Hayashi, Y.; Itoh, T.; Ohkubo, M.; Ishikawa, H. Angew. Chem., Int. Ed.
2008, 47, 4722. (e) Kano, T.; Yamaguchi, Y.; Maruoka, K. Angew.
Chem., Int. Ed. 2009, 48, 1838.
(6) Lupton has studied NHC-catalyzed activation of enol ether to
generate substituted enol as a nucleophile; see: (a) Ryan, S. J.; Candish,
L.; Lupton, D. W. J. Am. Chem. Soc. 2009, 131, 14176. (b) Candish, L.;
Lupton, D. W. Org. Lett. 2010, 11, 4836.
r
10.1021/ol402877n
XXXX American Chemical Society