Journal of the American Chemical Society
Article
(37) Cameron, D. W.; Raverty, W. D. Aust. J. Chem. 1976, 29, 1523−
1533.
(58) (a) White, J. D.; Nolen, E. G., Jr.; Miller, C. H. J. Org. Chem.
1986, 51, 1150−1152. (b) White, J. D.; Demnitz, F. W. J.; Xu, Q.;
Martin, W. H. C. Org. Lett. 2008, 10, 2833−2836.
(38) (a) Schaltegger, A.; Steiger, W. Arch. Pharm. 1986, 319, 575−
(59) Fitzjarrald, V. P.; Pongdee, R. Tetrahedron Lett. 2007, 48, 3553−
3557.
576. (b) Muller, K.; Gurster, D.; Piwek, S.; Wiegrebe, W. J. Med. Chem.
̈
̈
1993, 36, 4099−4107.
(60) Alternative batches of material displayed varying diastereomeric
ratios ranging from 1:1 to 3:1, favoring the desired C15 spirocycle
configuration, albeit in reduced yield, indicating some levels of
diastereomeric enhancement during chromatography.
(61) Gioeli, C.; Balgobin, N.; Josephson, S.; Chattopadhyaya, J. B.
Tetrahedron Lett. 1981, 22, 969−972.
(39) Thoma, K.; Holzmann, C. Eur. J. Pharm. Biopharm. 1998, 46,
201−208.
(40) (a) Stoll, A.; Becker, B.; Helfenstein, A. Helv. Chem. Acta. 1950,
33, 313−316. (b) Geiger, K. Chem. Ber. 1974, 107, 2976−2984. See
also: (c) Muller, K.; Eibler, E.; Mayer, K. K.; Wiegrebe, W.; Klug, G.
̈
Arch. Pharm. 1986, 319, 2−9. (d) Yamaguchi, M.; Hasebe, K.; Uchida,
M.; Higashi, H.; Minami, T. Bull. Chem. Soc. Jpn. 1989, 62, 2745−
2747. (e) Kuhnert, N.; Molod, H. Y. Tetrahedron Lett. 2005, 46,
7571−7573.
(62) (a) Corey, E. J.; Yang, Y. K. Tetrahedron Lett. 1992, 33, 2289−
2290. (b) Nicolaou, K. C.; Reddy, K. R.; Skokotas, G.; Sato, F.; Xiao,
X. Y.; Hwang, C. K. J. Am. Chem. Soc. 1993, 115, 3558−3575.
(63) Denmark, S. E.; Kobayashi, T.; Regens, C. S. Tetrahedron 2010,
66, 4745−4759.
(41) (a) Davis, B. R.; Hinds, M. G.; Johnson, S. J. Aust. J. Chem.
1985, 38, 1815−1825. (b) Namba, K.; Yamamoto, H.; Sasaki, I.; Mori,
K.; Imagawa, H.; Mugio, N. Org. Lett. 2008, 10, 1767−1770.
(c) Yadav, J. S.; Thirupathaiah, B.; Al Khazim AlGhamdi, A. Eur. J.
Org. Chem. 2012, 2072−2076. (d) Wang, J.; Zhang, L.; Jing, Y.;
Huang, W.; Zhou, X. Tetrahedron Lett. 2009, 50, 4978−4982. See
also: (e) Pittman, C. U., Jr.; Miller, W. G. J. Am. Chem. Soc. 1973, 95,
2947−2956. (f) Miller, W. G.; Pittman, C. U., Jr. J. Org. Chem. 1974,
39, 1955−1956. (g) Gassman, P. G.; Ray, J. A.; Wenthold, P. G.;
Mickelson, J. W. J. Org. Chem. 1991, 56, 5143−5146.
(64) Furstner, A.; Weintritt, H. J. Am. Chem. Soc. 1998, 120, 2817−
̈
2825.
(65) Adam, W.; Smerz, A. K. Tetrahedron 1996, 52, 5799−5804.
(66) Davis, F. A.; Stringer, O. D. J. Org. Chem. 1982, 47, 1774−1775.
(67) (a) Ikota, N.; Ganem, B. J. Org. Chem. 1978, 43, 1607−1608.
(b) Clarembeau, M.; Cravador, A.; Dumont, W.; Hevesi, L.; Krief, A.;
Lucchetti, J.; Van Ende, D. Tetrahedron 1985, 41, 4793−4812.
(c) Krief, A.; Hobe, M.; Badaoui, E.; Bousbaa, J.; Dumont, W.; Nazih,
A. Synlett 1993, 707−709. (d) Santi, C.; Santoro, S.; Testaferri, L.;
Tiecco, M. Synlett 2008, 1471−1474.
(68) (a) Donohoe, T. J.; Blades, K.; Moore, P. R.; Waring, M. J.;
Winter, J. J. G.; Helliwell, M.; Newcombe, N. J.; Stemp, G. J. Org.
Chem. 2002, 67, 7946−7956. (b) Donohoe, T. J.; Bataille, C. J. R. Org.
React. 2012, 1−48.
(69) Phillips, S. T.; Shair, M. D. J. Am. Chem. Soc. 2007, 129, 6589−
6598.
(42) (a) Ma, S.; Zhang, J. Tetrahedron 2003, 59, 6273−6282.
(b) Werle, S.; Fey, T.; Neudorfl, J. M.; Schmalz, H.-G. Org. Lett. 2007,
̈
9, 3555−3558. (c) Liu, H.; Wang, Y.-H.; Zhu, L.-L.; Li, X.-X.; Zhou,
W.; Chen, Z.; Hu, W.-X. Tetrahedron Lett. 2011, 52, 2990−2993.
(43) Moriarty, R. M.; Prakash, O. Org. React. 2004, 327−415.
(44) (a) Meyer, K. H. Justus Liebigs Ann. Chem. 1911, 379, 37−78.
(b) Thomson, R. H. Q. Rev. Chem. Soc. 1956, 10, 27−43. (c) Kundig,
̈
(70) Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc.
1976, 98, 7667−7674.
E. P.; Enríquez García, A.; Lomberget, T.; Bernardinelli, G. Angew.
Chem., Int. Ed. 2006, 45, 98−101. (d) Reviriego, F.; Alkorta, I.;
Elguero, J. J. Mol. Struct. 2008, 891, 325−328.
(71) Experimental evidence has been reported that supports the
existence of a transient, ring-opened intermediate. See: (a) Hlavka, J.
J.; Bitha, P.; Boothe, J. H. J. Am. Chem. Soc. 1968, 90, 1034−1037.
(b) Scott, A. I.; Yamaguchi, E.; Chung, S.-K. Tetrahedron Lett. 1975,
16, 1369−1372. For related rearrangements, see: (c) Stork, G. Chem.
Ind. 1955, 915−916. (d) Barton, D. H. R.; Scott, A. I. J. Chem. Soc.
1958, 1767−1772.
(45) Bauta, W. E.; Lovett, D. P.; Cantrell, W. R., Jr.; Burke, B. D. J.
Org. Chem. 2003, 68, 5967−5973.
(46) Pelter, A.; Elgendy, S. Tetrahedron Lett. 1988, 29, 677−680.
(47) Rathke, M. W.; Cowan, P. J. J. Org. Chem. 1985, 50, 2622−2624.
(48) Kornblum, N.; Smiley, R. A.; Blackwood, R. K.; Iffland, D. C. J.
Am. Chem. Soc. 1955, 77, 6269−6280.
(49) Nicolaou, K. C.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina, B. S.
Angew. Chem., Int. Ed. 2005, 44, 1378−1382.
(50) (a) Tamura, Y.; Wada, A.; Kita, Y. Tetrahedron Lett. 1981, 22,
4283−4286. For a review on cyclic anhydrides in cycloaddition
(72) Miller, B. Acc. Chem. Res. 1975, 8, 254−256.
(73) Horiuchi, C. A.; Ji, S. J.; Matsushita, M.; Chai, W. Synthesis
2004, 202−204.
(74) Mukaiyama, T.; Matsuo, J.; Kitagawa, H. Chem. Lett. 2000, 29,
1250−1251.
reactions, see: (b) Gonzal
109, 164−189.
́ ́
ez-Lopez, M.; Shaw, J. T. Chem. Rev. 2009,
(75) Tatsuta, K.; Fukuda, T.; Ishimori, T.; Yachi, R.; Yoshida, S.;
Hashimoto, H.; Hosokawa, S. Tetrahedron Lett. 2012, 53, 422−425.
(51) (a) Ohta, Y.; Hirose, Y. Chem. Lett. 1972, 263−266. For a
discussion on the role of the counterion in cationic cyclizations, see:
(b) Pronin, S. V.; Shenvi, R. A. Nat. Chem. 2012, 4, 915−920.
(52) Yamaguchi, S.; Nedachi, M.; Yokoyama, H.; Hirai, Y.
Tetrahedron Lett. 1999, 40, 7363−7365.
(76) (a) Koster, R.; Seidel, G. In Organometallic Syntheses; King, R.
̈
B.; Eisch, J. J., Eds.; Elsevier: Amsterdam, 1998; Vol. 4, pp 440−442.
(b) Furstner, A.; Seidel, G. J. Org. Chem. 1997, 62, 2332−2336.
̈
(77) Gibert, M.; Ferrer, M.; San
́
chez-Baeza, F.; Messeguer, A.
Tetrahedron 1997, 53, 8643−8650.
(53) (a) Raczyn
3561−3612. (b) Cyran
́
́
ska, W. Chem. Rev. 2005, 105,
(78) Professor Yi Tang (UCLA) is acknowledged for providing
natural viridicatumtoxin A [(+)-2] obtained from P. aethiopicum. In
this study, that material was used for antibacterial testing. For the
comparison data, compound (+)-2 was isolated by Kim and co-
workers from Penicillium sp. FR11 (see ref 1).
́
(c) Korth, H.-G.; Mulder, P. J. Org. Chem. 2013, 78, 7674−7682.
(54) Barton, D. H. R.; Ley, S. V.; Magnus, P. D.; Rosenfeld, M. N. J.
Chem. Soc., Perkin Trans. 1 1977, 567−572.
(55) Crystallographic data for compounds 60 (CCDC 941202), 15-
epi-133 (CCDC 941203), and 1 (945867) have previously been
reported by us (see ref 28). These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.
(79) Nelson, M.; Hillen, W.; Greenwald, R. A. Tetracyclines in Biology,
Chemistry, and Medicine; Birkhauser Verlag: Basel, 2001; p 26.
(80) (a) Oliva, B.; Gordon, G.; McNicholas, P.; Ellestad, G.; Chopra,
I. Antimicrob. Agents Chemother. 1992, 36, 913−919. (b) Chopra, I.
Antimicrob. Agents Chemother. 1994, 38, 637−640.
(81) The Clinical and Laboratory Standards Institute (CLSI) defines
a bactericidal compound as one capable of inducing a ≥ 3 log10 drop in
colony-forming units (CFU)/mL.
(56) For the sake of clarity, and because fragment 111 is racemic, we
elected to define the newly generated stereocenters at C4 and C4a as
those shown in Scheme 20, which results in the configuration at C15
appearing as a mixture (hence 15-epi). Both diastereomers shown are
formed along with their enantiomeric counterparts.
(82) Jenner, L.; Starosta, A. L.; Terry, D. S.; Mikolajka, A.; Filonava,
L.; Yusupov, M.; Blanchard, S. C.; Wilson, D. N.; Yusupova, G. Proc.
Natl. Acad. Sci., U. S. A. 2013, 110, 3812−3816.
(57) Kahne, D. E. Ph.D. Thesis, Columbia University, 1986.
W
dx.doi.org/10.1021/ja506472u | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX