novel cancer chemotherapeutics. Geldanamycin,6 as well as
aminoquinoline derivatives7 and purine analogues,8 have been
identified as inhibitors of Hsp-90.
Synthesis of 3-Aryl-8-oxo-5,6,7,8-
tetrahydroindolizines via a Palladium-Catalyzed
Arylation and Heteroarylation
Ste´phanie Gracia, Cle´ment Cazorla, Estelle Me´tay,
Ste´phane Pellet-Rostaing,* and Marc Lemaire*
Laboratoire de Catalyse et Synthe`se Organique, ICBMS,
Institut de Chimie et Biochimie Mole´culaires et
Supramole´culaires, CNRS, UMR 5246, UniVersite´ de Lyon,
69622 Villeurbanne, France
FIGURE 1. 8-Oxo-5,6,7,8-tetrahydroindolizine and Hsp-90 inhibitor.
pellet@uniV-lyon1.fr
To date, 3-aryl 8-oxo-5,6,7,8-tetrahydroindolizines has been
obtained by a-four step strategy involving a Suzuki-Miyaura9
coupling or a five-step procedure implementing a Mu¨ller-
Polleux10 preparation of pyrrole.
ReceiVed January 5, 2009
Herein, we disclose an alternative and pratical three-step
strategy for the preparation of 3-aryl 8-oxo-5,6,7,8-tetrahydroin-
dolizines 5 based on a direct arylation or heteroarylation of the
tetrahydroindolizine intermediate 4 (Scheme 1). Among the
different available methods for the formation of the tetrahy-
droindolizinone skeleton,1-4 condensation of γ-amino butyric
acid (GABA) with 2,3,4,5-tetrahydro-2,5-dimethoxytetrahydro-
furan,3 followed by the activation of the carboxylate group of
the resulting γ-pyrrolic acid 3 with PPA (polyphosphoric acid)
under modified Taylor conditions,1c was one of the most efficient
routes, affording the key intermediate 6,7-dihydro-8(5H)-
indolizinone 4 in an overall yield of 95%.
A selective palladium-catalyzed arylation and heteroarylation
of 8-oxo-5,6,7,8-tetrahydroindolizines has been developed.
Mechanistic studies assume an electrophilic substitution
pathway for this transformation. This method provides an
efficient one-step synthesis of 3-aryl-8-oxo-5,6,7,8-tetrahydro-
indolizines.
SCHEME 1. Preparation and Modification of 6,7-Dihydro-
8(5H) indolizinone
The 8-oxo-5,6,7,8-tetrahydroindolizine skeleton (Figure 1)
was reported as a key intermediate in the synthesis of indolizi-
dine building blocks1 and natural indolizidine alkaloids such
as the (+)-monomorine,1g indolizidine 209D,1,2 or polygonatines
A, B1f and kinganone.1,3 Recently, 3-aryl-8-oxo-5,6,7,8-tetrahy-
droindolizines4 were described as inhibitors of Hsp-90, an ATP-
dependent chaperone responsible for the regulation of stabili-
zation, activation, and degradation of a range of “client” proteins
involved in cell cycle regulation and signal conduction.5 Because
many oncogenic proteins are substrates for Hsp-mediated protein
folding processes, Hsp-90 has become an attractive target for
Selective coupling of aryl and heteroaryl motifs at the C-3
position of the tetrahydroindolizine ring allowed access to the
3-aryl-8-oxo-5,6,7,8-tetrahydroindolizines. Although similar
coupling reactions on various heterocyclic systems10 such as
furans,11 thiophenes,12 and indoles13 have been described in the
(1) (a) Bond, T. J.; Jenkins, R.; Ridley, A. C.; Taylor, P. C. J. Chem. Soc.,
Perkin Trans 1 1993, 2241. (b) Bond, T. J.; Jenkins, R.; Taylor, P. C. Tetrahedron
Lett. 1994, 35, 9263. (c) Barton, D. H. R.; Araujo Pereira, M. M. M.; Taylor,
D. K. Tetrahedron Lett. 1994, 35, 9157. (d) Liu, J. Y.; Zhang, S. F. Chin. Chem.
Lett. 1997, 8, 577. (e) Miranda, L. D.; Cruz-Almanza, R.; Alvarez-Garcia, A.;
Muchowski, J. M. Tetrahedron Lett. 2000, 41, 3035. (f) Michael, J. P. Nat. Prod.
Rep. 2007, 24, 191. (g) Toyooka, N.; Zhou, D.; Nemoto, H. J. Org. Chem. 2008,
73, 4575.
(2) Amos, R. I. J.; Gourlay, B. S.; Molesworth, P. P.; Smith, J. A.; Sprod,
O. R. Tetrahedron 2005, 61, 8226.
(3) Dinsmore, A.; Mandy, K.; Michael, J. P. Org. Biomol. Chem. 2006, 4,
1032.
(6) Qin, H.-L.; Panek, J. S. Org. Lett. 2008, 10, 2477.
(7) Ganesh, T.; Min, J.; Thepchatri, P.; Du, Y.; Li, L.; Lewis, I.; Wilson, L.;
Fu, H.; Chiosis, G.; Dingledine, R.; Liotta, D.; Snyder, J. P.; Sun, A. Bioorg.
Med. Chem. 2008, 16, 6903.
(8) Wright, L.; Barril, X.; Dymock, B.; Sheridan, L.; Surgenor, A.; Beswick,
M.; Drysdale, M.; Collier, A.; Massey, A.; Davies, N.; Fink, A.; Fromont, C.;
Aherne, W.; Boxall, K.; Sharp, S.; Workman, P.; Hubbard, R. E. Chem. Biol.
2004, 11, 775.
(9) Mu¨ller, P.; Polleux, P. HelV. Chim. Acta 1998, 81, 317.
(10) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174.
(11) Kim, J. T.; Gevorgyan, V. Org. Lett. 2002, 4, 4697.
(12) Lover, J. T.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M.
Org. Lett. 2003, 5, 301.
(4) Huang, K. H.; Manguette, J.; Barta, T.; Hugues, P.; Hall, S. E.; Veal, J.
Patent WO 2008/024978.
(5) (a) Pratt, W. B.; Toft, D. O. Exp. Biomol. Med. 2003, 228, 111. (b) Isaacs,
J. S.; Xu, W.; Neckers, L. Cancer Cell 2003, 3, 213. (c) Janin, Y. L. J. Med.
Chem. 2005, 48, 7503. (d) Chiosis, G.; Rodina, A.; Moulick, K. Anticancer Agents
Med. Chem. 2006, 6, 1. (e) He, H.; Zatorska, D.; Kim, J.; Aguirre, J.; Llauger,
L.; She, Y.; Wu, N.; Immorino, R. M.; Gewirth, D. T.; Chiosis, G. J. Med.
Chem. 2006, 49, 381.
3160 J. Org. Chem. 2009, 74, 3160–3163
10.1021/jo802768n CCC: $40.75 2009 American Chemical Society
Published on Web 03/18/2009