Ring Size and ActiVity of Cyclic Cationic Peptides
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 7 2097
(9) Gause, G. F.; Brazhnikova, M. G. Gramicidin S and its use in the
treatment of infected wounds. Nature (London) 1944, 154, 703b.
(10) Schmidt, G. M. J.; Crowfoot-Hodgkin, D.; Oughton, B. M. A
crystallographic study of some derivatives of gramicidin S. Biochem.
J. 1957, 65, 744–756.
(11) Stern, A.; Gibbons, W. A.; Craig, L. C. A conformational analysis of
gramicidin S-A by nuclear magnetic resonance. Proc. Natl. Acad. Sci.
U.S.A. 1968, 61, 734–741.
and 10-fold increase, respectively). This peptide also had low
affinity to interact with PC vesicles but had a higher tendency
to interact with the negatively charged PE/PG vesicles. GS14-
L3, a moderately amphipathic peptide with a relatively less
flexible13-meric ring, was the lead peptide with the best TI for
average activity against Gram-positive bacteria and fungi
(compared with GS, 5.8- and 4.5-fold increase, respectively).
With their low toxicity against erythrocytes (6-8 times less
than GS), potent antimicrobial activity, and specificity (com-
parable to those of GS and GS10), as well as various possibilities
for optimizing their therapeutic function,7 GS16 and GS14-L3
can therefore serve as promising candidates for developing novel
broad-spectrum antimicrobial peptide drugs.
(12) Hull, S. E.; Karlsson, R.; Main, P.; Wolfson, M. M.; Dodson, E. J.
The crystal structure of a hydrated gramicidin S-urea complex. Nature
(London) 1978, 275, 206–207.
(13) Kondejewski, L. H.; Farmer, S. W.; Wishart, D. S.; Hancock, R. E. W.;
Hodges, R. H. Gramicidin S is active against both Gram-positive and
Gram-negative bacteria. Int. J. Pept. Protein Res. 1996, 47, 460–466.
(14) Brodgen, K. A. Antimicrobial peptides: pore formers or metabolic
inhibitors in bacteria. Nat. ReV. Microbiol. 2005, 3, 238–250.
(15) Niidome, T.; Murakami, H.; Kawazoe, M.; Hatakeyama, T.; Kobashi-
gawa, Y.; Matsushita, M.; Kumaki, Y.; Demura, M.; Nitta, K.; Aoyagi,
H. Carbohydrate recognition of gramicidin S analogs in aqueous
medium. Bioorg. Med. Chem. Lett. 2001, 11, 1893–1896.
(16) Mogi, T.; Ui, H.; Shiomi, K.; Omura, S.; Kita, K. Gramicidin S
identified as a potent inhibitor for cytochrome bd-type quinol oxidase.
FEBS Lett. 2008, 582, 2299–2302.
(17) Jelokhani-Niaraki, M.; Prenner, E. J.; Kondejewski, L. H.; Kay, C. M.;
McElhaney, R. N.; Hodges, R. S. Conformation and other biophysical
properties of the cyclic antimicrobial peptides in aqueous solutions.
J. Pept. Res. 2001, 58, 293–306.
(18) Jelokhani-Niaraki, M.; Prenner, E. J.; Kay, C. M.; McElhaney, R. N.;
Hodges, R. S. Conformation and interaction of the cyclic antimicrobial
peptides in lipid bilayers. J. Pept. Res. 2002, 60, 23–36.
(19) Jelokhani-Niaraki, M.; Hodges, R. S.; Meissner, J. E.; Hassenstein,
U. E.; Wheaton, L. Interaction of gramicidin S and its aromatic amino-
acid analogs with phospholipid membranes. Biophys. J. 2008, 95,
3306–3321.
Acknowledgment. We thank Marc Genest for peptide
synthesis and purification and amino acid analysis. This study
was supported by grants from the Canada Foundation for
Innovation (CFI, Grant 6786) and the Natural Sciences and
Engineering Research Council of Canada (NSERC, Grant
250119) to M.J.-N. and from the Protein Engineering Network
of Centres of Excellence (PENCE) and National Institutes of
Health (Grant NIHR01-AI-067296) to R.S.H.
Supporting Information Available: CD spectra of GS {13,14}
and GS {15,16} group peptides and relation between retention times
and ꢀ-sheet content of peptides. This material is available free of
(20) Salgado, J.; Grage, S. L.; Kondejewski, L. H.; Hodges, R. S.;
McElhaney, R. N.; Ulrich, A. S. Membrane-bound structure and
alignment of the antimicrobial ꢀ-sheet peptide gramicidin S derived
from angular and distance constraints by solid-state 19F-NMR.
J. Biomol. NMR 2001, 21, 191–208.
(21) MacDonald, R. C.; MacDonald, R. I.; Menco, B. Ph. M.; Takeshita,
K.; Subbarao, N. K.; Hu, L.-R. Small-volume extrusion apparatus for
preparation of large unilamellar vesicles. Biochim. Biophys. Acta 1991,
1061, 297–303.
(22) Gibbs, A. C.; Kondejewski, L. H.; Gronwald, W.; Nip, A. M.; Hodges,
R. S.; Sykes, B. D.; Wishart, D. S. Unusual ꢀ-sheet periodicity in
small cyclic peptides. Nat. Struct. Biol. 1998, 5, 284–288.
(23) Shwyzer, R. Chemistry of amino acids and peptides. Annu. ReV.
Biochem. 1960, 29, 183–206.
(24) Sereda, T. J.; Mant, C. T.; Hodges, R. S. Selectivity due to
conformational differences between helical and non-helical peptides
in reversed-phase chromatography. J. Chromatogr., A 1995, 695, 205–
221.
(25) Fasman, G. D., Ed. Circular Dichroism and the Conformational
Analysis of Biomolecules; Plenum Press: New York, 1996.
(26) White, S. H.; Wimley, W. C. Membrane protein folding and stability:
physical principles. Annu. ReV. Biochem. 1999, 28, 319–365.
(27) McInnes, C.; Kondejewski, L. H.; Hodges, R. S.; Sykes, B. D.
Development of the structural basis for antimicrobial and hemolytic
activities of peptides based on gramicidin S and design of novel
analogs using NMR spectroscopy. J. Biol. Chem. 2000, 275,
14287–14294.
References
(1) Wax, R. G., Lewis, K., Salyers, A., Taber, H., Eds. Bacterial Resistance
to Antimicrobials, 2nd ed.; CRC Press: Roca Baton, FL, 2007.
(2) Kleinkauf, H., von Do¨hren, H., Eds. Biochemistry of Peptide Antibiot-
ics; Walter de Gruyter: Berlin, Germany, 1990.
(3) Yount, N. Y.; Yeaman, M. R. Immunocontinuum: perspectives in
antimicrobial mechanisms of action and resistance. Protein Pept. Lett.
2005, 12, 49–76.
(4) Kondejewski, L. H.; Farmer, S. W.; Wishart, D. S.; Kay, C. M.;
Hancock, R. E. W.; Hodges, R. H. Modulation of structure and
antibacterial and hemolytic activity by ring size in cyclic gramicidin
S analogs. J. Biol. Chem. 1996, 271, 25261–25268.
(5) Kondejewski, L. H.; Jelokhani-Niaraki, M.; Farmer, S. W.; Lix, B.;
Kay, C. M.; Sykes, B. M.; Hancock, R. E. W.; Hodges, R. H.
Dissociation of antimicrobial and hemolytic activities in cyclic peptide
diasteromers by systematic alterations in amphipathicity. J. Biol. Chem.
1999, 274, 13181–13192.
(6) Jelokhani-Niaraki, M.; Kondejewski, L. H.; Farmer, S. W.; Hancock,
R. E. W.; Kay, C. M.; Hodges, R. S. Diastereomeric analogues of
gramicidin S: structure, biological activity and interaction with lipid
bilayers. Biochem. J. 2000, 349, 747–756.
(7) Kondejewski, L. H.; Lee, D. L.; Jelokhani-Niaraki, M.; Farmer, S. W.;
Hancock, R. E. W.; Hodges, R. H. Optimization of microbial specificity
in cyclic peptides by modulation of hydrophobicity within a defined
structural framework. J. Biol. Chem. 2002, 277, 67–74.
(8) Lee, D. L.; Hodges, R. S. Structure-activity relationships of de novo
designed cyclic antimicrobial peptides based on gramicidin S. Biopoly-
mers 2003, 71, 28–48.
JM801648N