1996, 118, 8747–8748; (c) S. Kumamoto, M. Watanabe, N. Kawakami,
M. Nakamura and K. Yamana, Bioconjugate Chem., 2008, 19, 65–
69; (d) M. Castano-Alvarez, M. T. Fernandez-Abedul and A. Costa-
Garcia, Electrophoresis, 2007, 28, 4679–4689; (e) T. T. Williams, C.
Dohno, E. D. A. Stemp and J. K. Barton, J. Am. Chem. Soc., 2004, 126,
8148–8158; (f) R. E. McKnight, J. Zhang and D. W. Dixon, Bioorg.
Med. Chem. Lett., 2004, 14, 401–404; (g) S. Kumamoto, H. Nakano,
Y. Matsuo, Y. Sugie and K. Yamana, Electrochemistry, 2002, 70, 789–
794.
2 (a) A. Okamoto, T. Kamei and I. Saito, J. Am. Chem. Soc., 2006, 128,
658–662; (b) A. Okamoto, T. Kamei, K. Tanaka and I. Saito, J. Am.
Chem. Soc., 2004, 126, 14732–14733.
3 Review: H.-A. Wagenknecht, Nat. Prod. Rep., 2006, 23, 973–1006 and
references therein.
4 Charge-transfer in DNA: From mechanism to Application, ed. H.-A.
Wagenknecht, Wiley-VCH, Weinheim, 2005.
5 E. Mayer-Enthart and H.-A. Wagenknecht, Angew. Chem., Int. Ed.,
2006, 45, 3372–3375.
6 C. Wagner and H.-A. Wagenknecht, Chem.–Eur. J., 2005, 11, 1871–
1876.
7 A. A. Gorodetsky, O. Green, E. Yavin and J. K. Barton, Bioconjugate
Chem., 2007, 18, 1434–1441.
Fig. 6 Cyclic voltammetry for a gold electrode modified with O6, before
(solid line) and after hybridization with a complementary O7 (dashed line).
Scan rate is 20 mV s-1. Inset: background-subtracted peak for oxidation
of AQ-dU, derived from the CV of O6 in the main figure.
8 L. Zhu, J. Duquette and M. Zhang, J. Org. Chem., 2003, 68, 3729–
3732.
9 H. Tohma, H. Moriaka, Y. Harayama, M. Hashizume and Y. Kita,
Tetrahedron Lett., 2001, 42, 6899–6902.
10 The 5¢-C6-disulfide modification was incorporated such that the
oligonucleotide may be immobilized on gold surfaces subsequently by
standard thiol-Au chemistry.
11 (a) K. Yamana, Y. Nishijima, T. Ikeda, T. Gokota, H. Ozaki, H.
Nakano, O. Sangen and T. Shimidzu, Bioconjugate Chem., 1990, 1, 319–
324; (b) H. Deshmukh, S. P. Joglekar and A. D. Broom, Bioconjugate
Chem., 1995, 6, 578–586.
oligonucleotides. Electrochemical studies demonstrated principal
applicability of the synthesized AQ-dU base for DNA assays.
Future work will focus on the implementation of such oligonu-
cleotides as photoexcitable probes for studies of DNA hole trans-
port and the further development of the electrochemical DNA
assays exploiting electrochemical and photochemical properties
of the designed artificial nucleotide, i.e. estimations of effects of
sequence positions of AQ-dU on selectivity and sensitivity of the
DNA assay.
12 A. J. Bard, and L. R. Faulkner, Electrochemical Methods - Fundamen-
tals and Applications, Wiley, New York, 1980.
13 (a) M. Chahma, J. S. Lee and H. B. Kraatz, J. Electroanal. Chem., 2004,
567, 283–287; (b) K. A. Peterlinz and R. M. Georgiadis, J. Am. Chem.
Soc., 1997, 119, 3401–3402; (c) D. Y. Petrovykh, H. Kimura-Suda, L. J.
Whitman and M. J. Tarlov, J. Am. Chem. Soc., 2003, 125, 5219–5226;
(d) A.-E. Radi, J. L. A. Sa´nchez, E. Baldrich and C. K. O’Sullivan,
J. Am. Chem. Soc., 2006, 128, 117–124.
14 E. Laviron, J. Electroanal. Chem., 1979, 101, 19–28.
15 G. Hartwich, D. J. Caruana, T. de Lumley-Woodyear, Y. Wu, C. N.
Campbell and A. Heller, J. Am. Chem. Soc., 1999, 121, 10803–
10812.
Acknowledgements
Financial support for this work by the Danish National Research
Foundation, and the Carlsberg Foundation is gratefully acknowl-
edged.
Notes and references
16 S. B. Smith, Y. Cui and C. Bustamante, Science, 1996, 271, 795–
1 (a) H. Ihmels and D. Otto, Top. Curr. Chem., 2005, 258, 161–204;
(b) D. Ly, Y. Kan, B. Armitage and G. B. Schuster, J. Am. Chem. Soc.,
799.
908 | Org. Biomol. Chem., 2009, 7, 905–908
This journal is
The Royal Society of Chemistry 2009
©