ARTICLES
17. Schipper, D. J., Hutchinson, M. & Fagnou, K. Rhodium(III)-catalyzed
intermolecular hydroarylation of alkynes. J. Am. Chem. Soc. 132, 6910–6911 (2010).
18. Hashimoto, Y., Hirano, K., Satoh, T., Kakiuchi, F. & Miura, M. Ruthenium(II)-
catalyzed regio- and stereoselective hydroarylation of alkynes via directed C–H
functionalization. Org. Lett. 14, 2058–2061 (2012).
19. Hashimoto, Y., Hirano, K., Satoh, T., Kakiuchi, F. & Miura, M. Regioselective
C–H bond cleavage/alkyne insertion under ruthenium catalysis. J. Org. Chem.
78, 638–646 (2013).
39. Cornella, J., Righi, M. & Larrosa, I. Carboxylic acids as traceless directing
groups for formal meta-selective direct arylation. Angew. Chem. Int. Ed. 50,
9429–9432 (2011).
40. Bhadra, S., Dzik, W. I. & Gooβen, L. J. Synthesis of aryl ethers from benzoates
through carboxylate-directed C–H-activating alkoxylation with concomitant
protodecarboxylation. Angew. Chem. Int. Ed. 52, 2959–2962 (2013).
41. Mamone, P., Danoun, G. & Gooβen, L. J. Rhodium-catalyzed ortho acylation of
aromatic carboxylic acids. Angew. Chem. Int. Ed. 52, 6704–6708 (2013).
42. Luo, J., Preciado, S. & Larrosa, I. Overriding ortho−para selectivity via a traceless
directing group relay strategy: the meta-selective arylation of phenols. J. Am.
Chem. Soc. 136, 4109–4112 (2014).
20. Min, M., Kim, D. & Hong, S. AgSbF6-controlled diastereodivergence in alkyne
hydroarylation: facile access to Z- and E-alkenyl arenes. Chem. Commun. 50,
8028–8031 (2014).
21. Zhang, F. & Spring, D. R. Arene C–H functionalisation using a removable/
modifiable or a traceless directing group strategy. Chem. Soc. Rev. 43,
6906–6919 (2014).
43. Quan, Y. & Xie, Z. Iridium catalyzed regioselective cage boron alkenylation of
o-carboranes via direct cage B−H activation. J. Am. Chem. Soc. 136,
15513–15516 (2014).
22. Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and
catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).
23. Liu, G., Shen, Y., Zhou, Z. & Lu, X. Rhodium(III)-catalyzed redox-neutral
coupling of N-phenoxyacetamides and alkynes with tunable selectivity. Angew.
Chem. Int. Ed. 52, 6033–6037 (2013).
24. Wang, C., Chen, H., Wang, Z., Chen, J. & Huang, Y. Rhodium(III)-catalyzed C–H
activation of arenes using a versatile and removable triazene directing group.
Angew. Chem. Int. Ed. 51, 7242–7245 (2012).
25. Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H
activation of amines. Nature 507, 215–220 (2014).
26. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond
functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).
27. Shepard, A. F., Winslow, N. R. & Johnson, J. R. The simple halogen derivative of
furan. J. Am. Chem. Soc. 52, 2083–2090 (1930).
28. Gooβen, L. J., Rodriguez, N. & Gooβen, K. Carboxylic acids as substrates in
homogeneous catalysis. Angew. Chem. Int. Ed. 47, 3100–3120 (2008).
29. Rodriguez, N. & Gooβen, L. J. Decarboxylative coupling reactions: a modern
strategy for C–C-bond formation. Chem. Soc. Rev. 40, 5030–5048 (2011).
30. Cornella, J. & Larrosa, I. Decarboxylative carbon–carbon bond-forming
transformations of (hetero)aromatic carboxylic acids. Synthesis 44, 653–676 (2012).
31. Tang, J., Biafora, A. & Goossen, L. J. Catalytic decarboxylative cross-coupling of
aryl chlorides and benzoates without activating ortho substituents. Angew.
Chem. Int. Ed. 44, 13130–13133 (2015).
32. Myers, A. G., Tanaka, D. & Mannion, M. R. Development of a decarboxylative
palladation reaction and its use in a Heck-type olefination of arene carboxylates.
J. Am. Chem. Soc. 124, 11250–11251 (2002).
33. Gooβen, L. J., Deng, G. & Levy, L. M. Decarboxylation: synthesis of biaryls via
catalytic decarboxylative coupling. Science 313, 662–664 (2006).
34. Gooβen, L. J., Thiel, W. R., Rodriguez, N., Linder, C. & Melzer, B. Copper-
catalyzed protodecarboxylation of aromatic carboxylic acids. Adv. Synth. Catal.
349, 2241–2246 (2007).
35. Ueura, K., Satoh, T. & Miura, M. Rhodium- and iridium-catalyzed oxidative
coupling of benzoic acids with alkynes via regioselective C–H bond cleavage.
J. Org. Chem. 72, 5362–5367 (2007).
36. Maehara, A., Tsurugi, H., Satoh, T. & Miura, M. Regioselective C–H
functionalization directed by a removable carboxyl group: palladium-catalyzed
vinylation at the unusual position of indole and related heteroaromatic rings.
Org. Lett. 10, 1159–1162 (2008).
37. Mochida, S., Hirano, K., Satoh, T. & Miura, M. Synthesis of stilbene and
distyrylbenzene derivatives through rhodium-catalyzed ortho-olefination and
decarboxylation of benzoic acids. Org. Lett. 12, 5776–5779 (2010).
38. Wang, C., Rakshit, S. & Glorius, F. Palladium-catalyzed intermolecular
decarboxylative coupling of 2-phenylbenzoic acids with alkynes via C–H and
C–C bond activation. J. Am. Chem. Soc. 132, 14006–14008 (2010).
44. Qin, X., Sun, D., You, Q., Cheng, Y. & You, J. Rh(III)-catalyzed decarboxylative
ortho-heteroarylation of aromatic carboxylic acids by using the carboxylic acid
as a traceless directing group. Org. Lett. 17, 1762–1765 (2015).
45. Zhang, Y., Zhao, H., Zhang, M. & Su, W. Carboxylic acids as traceless directing
groups for the rhodium(III)-catalyzed decarboxylative C–H arylation of
thiophenes. Angew. Chem. Int. Ed. 54, 3817–3821 (2015).
46. Shi, X.-Y. et al. A convenient synthesis of N-aryl benzamides by rhodium-
catalyzed ortho-amidation and decarboxylation of benzoic acids. Chem. Eur. J.
21, 1900–1903 (2015).
47. Shi, X.-Y. et al. Ru(II)-catalyzed ortho-amidation and decarboxylation of
aromatic acids: a versatile route to meta-substituted N-aryl benzamides.
Sci. China Chem. 58, 1286–1291 (2015).
48. Ackermann, L., Pospech, J., Graczyk, K. & Rauch, K. Versatile synthesis of
isocoumarins and α-pyrones by ruthenium-catalyzed oxidative C–H/O–H bond
cleavages. Org. Lett. 14, 930–933 (2012).
49. Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. Ruthenium(II)-catalyzed C−H
bond activation and functionalization. Chem. Rev. 112, 5879–5919 (2012).
50. Cacchi, S., Felici, M. & Pietroni, B. The palladium-catalyzed reaction of aryl
iodides with mono- and disubstituted acetylenes: a new synthesis of
trisubstituted alkenes. Tetrahedron Lett. 25, 3137–3140 (1984).
Acknowledgements
We thank the National Science Foundation (CHE-1301409 and RII-1330840 in association
with the North Dakota Experimental Program to Stimulate Competitive Research (ND
EPSCoR) to P.Z. and J.Z.) and ND EPSCoR (EPS-0447679, fellowship to J.Z.) for their
financial support. The work of J.F.H. and R.S. was supported by the Director, Office of
Science, US Department of Energy, under Contract no. DE-AC02-05CH11231. We also
thank A. Ugrinov for assistance with the X-ray diffraction data collection and analysis.
Author contributions
J.Z. performed the experiments and data analysis. R.S. participated in the high-throughput
screening experiments for catalyst development. J.Z., J.F.H. and P.Z. designed the catalytic
sequence and developed the reaction conditions. P.Z. and J.F.H. prepared this manuscript
with feedback from J.Z. and R.S.
Additional information
Supplementary information and chemical compound information are available in the
Competing financial interests
The authors declare no competing financial interests.
8
© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.