2002
Y. Kato et al. / Tetrahedron Letters 50 (2009) 1998–2002
Table 2
ment with thionyl chloride, followed by the alkaline hydrolysis
of the resulting 20-cyano-1,10-binaphthalene-2-carboxylic acid.10
Therefore, the solvent-controlled optical resolution of the diacid
via 1-phenylethylamides has been achieved.
Recrystallization oof amides (RSa,S)-1 from mixed solvents
Entry Components and volume ratio
of mixed solvent
e
Yield
(%)a
De
Absolute
(%)b
configurationb
In conclusion, we have shown here that the recrystallization of
a diastereomeric mixture of amides (RSa,S)-1 affords either of the
diastereomers as diastereomerically pure crystals, depending on
the solvent employed, and that the solvent dependence is attrib-
uted to the difference in crystal structure between the two diaste-
reomers and to the steric and electronic properties of the solvent.
In addition, we have succeeded in extending the DCR method to
a covalent diastereomer-based resolution. We believe that detailed
studies on this covalent diastereomer-based resolution, which is
more simple than existing diastereomeric salt systems, afford deep
insight into the chiral discrimination mechanisms that control the
DCR phenomena.
Acetone:hexane:1-PrOH
1
2
3
4
5
6
7
8
25:63:12
25:55:20
25:43:32
25:30:45
25:19:56
25:7:68
25:0:75
8.9 23
10.2 21
12.5 14
100
100
32
100
100
100
100
100
Sa,S
Sa,S
Ra,S
Ra,S
Ra,S
Ra,S
Ra,S
Ra,S
14.8
16.8
4
9
18.9 10
20.3
20.3 10
4
25:0:75
Acetone:toluene:1-PrOH
25:75:0
25:63:12
25:50:25
25:50:25
25:20:55
25:12:63
25:12:63
25:0:75
9
10
11
12
13
14
15
16
7.0
9.2
6
7
3
9
9
4
4
92
100
100
100
100
100
100
100
Sa,S
Ra,S
Ra,S
Ra,S
Ra,S
Ra,S
Ra,S
Ra,S
11.4
11.4
16.7
18.0
18.0
Acknowledgments
20.3 10
CH2Cl2:hexane:1-PrOH
25:63:12
25:37:38
25:25:50
25:20:55
This study was supported in part by a Grant-in-Aid for Scientific
Research on a Priority Area ‘Advanced Molecular Transformations
of Carbon Resources’ from the Ministry of Education, Culture,
Sports, Science and Technology, Japan. T. H. wishes to thank Toray
Fine Chemicals Co., Ltd for financial support.
17
18
19
20
21
22
6.0 12
10.5 15
12.8 26
100
100
20
84
100
100
Sa,S
Sa,S
Sa,S
Ra,S
Ra,S
Ra,S
13.7
7
25:12:63
25:0:75
15.0 11
17.3 11
a
Isolated yield.
b
Determined by 1H NMR analysis.
References and notes
1. (a) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates, and Resolutions;
Wiley: New York, 1981; (b) Kozma, D. CRC Handbook of Optical Resolution via
Diastereomeric Salt Formation; CRC: Boca Raton, 2002.
2. Tamura, R.; Takahashi, H.; Fujimoto, D.; Ushio, T. Top. Curr. Chem. 2007, 269, 53.
3. Kellogg, R. M.; Kaptein, B.; Vries, T. R. Top. Curr. Chem. 2007, 269, 159.
4. Sakai, K.; Sakurai, R.; Yuzawa, A.; Hirayama, N. Tetrahedron: Asymmetry 2003,
14, 3713.
5. Sakai, K.; Sakurai, R.; Hirayama, N. Tetrahedron: Asymmetry 2004, 15, 1073.
6. Sakai, K.; Sakurai, R.; Akimoto, T.; Hirayama, N. Org. Biomol. Chem. 2005, 3, 360.
7. In this connection, effects of the dielectric constant of solvent on the specific
rotations of the diastereomeric salts have been studied: Taniguchi, K.; Sakurai,
R.; Sakai, K.; Yasutake, M.; Hirose, T. Bull. Chem. Soc. Jpn. 2006, 79, 1084.
8. Reviews: (a) Sakai, K.; Sakurai, R.; Nohira, H. Top. Curr. Chem. 2007, 269, 199; (b)
Sakai, K.; Sakurai, R.; Hirayama, N. Top. Curr. Chem. 2007, 269, 233.
9. (a) Sakai, K.; Sakurai, R.; Nohira, H.; Tanaka, R.; Hirayama, N. Tetrahedron:
Asymmetry 2004, 15, 3495; (b) Sakai, K.; Sakurai, R.; Hirayama, N. Tetrahedron:
Asymmetry 2006, 17, 1812; (c) Sakurai, R.; Yuzawa, A.; Sakai, K.; Hirayama, N.
Cryst. Growth Des. 2006, 6, 1606; (d) Taniguchi, K.; Aruga, M.; Yasutake, M.;
Hirose, T. Org. Biomol. Chem. 2008, 6, 458; (e) Hirose, T.; Begum, M.; Islam, Md.
S.; Taniguchi, K.; Yasutake, M. Tetrahedron: Asymmetry 2008, 19, 1641.
10. Oi, S.; Matsuzaka, Y.; Yamashita, J.; Miyano, S. Bull. Chem. Soc. Jpn. 1989, 62,
956.
11. Crystallographic data for (Ra,S)-1: C30H23NO3, fw = 445.49, T = 100(2) K,
monoclinic, P21, a = 9.202(2) Å, b = 14.170(3) Å, c = 9.299(2) Å, b = 98.369(6)°,
V = 1199.6(5) Å3, Z = 2, calcd = 1.233 g cmꢁ3, 5145 independent reflections, 3951
q
reflections were observed (I > 2r(I)), R1 = 0.0577, wR2 = 0.1276 (observed),
R1 = 0.0723, wR2 = 0.1333 (all data). Crystallographic data for (Sa,S)-1ꢀacetone:
C33H29NO4, fw = 505.37, T = 173(2) K, orthorhombic, P212121, a = 11.325(2) Å,
b = 13.892(2) Å, c = 17.405(3) Å, V = 2738.2(8) Å3, Z = 4,
6381 independent reflections, 4054 reflections were observed (I > 2
q
calcd = 1.222 g cmꢁ3
(I)),
,
r
Figure 8. Dependence of the diastereomeric excess of deposited amide 1 on the
dielectric constant of the solvent employed in the resolution; acetone–hexane–1-
propanol (d), acetone–toluene–1-propanol (j), CH2Cl2–hexane–1-propanol (N).
R1 = 0.0485, wR2 = 0.1071 (observed), R1 = 0.0972, wR2 = 0.1234 (all data).
Crystallographic data for (Ra,S)-1ꢀEtOH: C32H29NO4, fw = 491.56, T = 100 (2) K,
trigonal, P32, a = b = 14.8700(16) Å, c = 10.1538(16) Å, V = 1944.4(4) Å3, Z = 3,
q
calcd = 1.259 g cmꢁ3
observed (I > 2
,
5603 independent reflections, 4312 reflections were
ilar observations have been reported for the resolution of diastereo-
meric salts.9a,d,e
The diastereomerically pure amides (Sa,S)- and (Ra,S)-1 thus ob-
tained can be converted into 1,10-binaphthalene-2,20-dicarboxylic
acid without any appreciable loss of axial chirality by the treat-
r
(I)), R1 = 0.0430, wR2 = 0.1028 (observed), R1 = 0.0606,
wR2 = 0.1143 (all data). The details of the crystal data have been deposited
with CambridgeCrystallographic Data Centre as supplementary publication Nos.
CCDC 715192–715194.
12. The values of dielectric constants of mixed solvents were calculated as the
weighted average of dielectric constants of components. See Ref. 9a.