Organic Letters
Letter
electron-withdrawing group compromised the transformation
(4m, 15% yield), suggesting a cationic intermediate was
involved. Interestingly, the pyridino and aliphatic R3 substituted
amidines were competent in giving the desired products in
good yields (4v, 4x′), complementary to the hypervalent
iodine/nonpolar solvent protocol.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
The exact mechanism of the TEMPO-catalyzed K2S2O8-
promoted oxidative Csp3−Csp2 coupling reaction was not clear
at this stage. But the reaction condition screening experiments
excluded the free radical mechanism (SI). Furthermore, the N-
methlylated substrate 6 failed to produce 3,4-dihydroquinazo-
line 7, and the electron-withdrawing p-CF3-phenyl substituted
amidine delivered compound 11 as a major product when
extending the reaction time to 5 h (Scheme 7).
Author Contributions
†J.-P.L. and F.-H.Z. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (81123004, 81325020 and
81361120410).
Scheme 7. Electron-Withdrawing Substituent Effect
REFERENCES
■
(1) (a) Bansal, Y.; Silakari, O. Bioorg. Med. Chem. 2012, 20, 6208.
(b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166. (c) Marzaro, G.;
Guiotto, A.; Chilin, A. Expert Opin. Ther. Pat. 2012, 22, 223.
(2) (a) Jin, Y.; Li, H. Y.; Lin, L. P.; Tan, J.; Ding, J.; Luo, X.; Long, Y.
Q. Bioorg. Med. Chem. 2005, 13, 5613. (b) Connolly, D. J.; Cusack, D.;
O’Sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61, 10153. (c) Witt,
A.; Bergman, J. Curr. Org. Chem. 2003, 7, 659. (d) Lin, S. Y.; Isome, Y.;
Stewart, E.; Liu, J. F.; Yohannes, D.; Yu, L. B. Tetrahedron Lett. 2006,
47, 2883. (e) McGowan, M. A.; McAvoy, C. Z.; Buchwald, S. L. Org.
Lett. 2012, 14, 3800. (f) Baars, H.; Beyer, A.; Kohlhepp, S. V.; Bolm,
C. Org. Lett. 2014, 16, 536.
Taken together, a possible mechanism was proposed in
Scheme 8, in which the stoichiometric secondary oxidant
Scheme 8. A Possible Mechanism of the TEMPO-Catalyzed
Annulation Using K2S2O8 as the Oxidant
(3) (a) Peng, J. S.; Ye, M.; Zong, C. J.; Hu, F. Y.; Feng, L. T.; Wang,
X. Y.; Wang, Y. F.; Chen, C. X. J. Org. Chem. 2011, 76, 716. (b) Zou,
B. L.; Yuan, Q. L.; Ma, D. W. Angew. Chem., Int. Ed. 2007, 46, 2598.
(c) Zheng, N.; Anderson, K. W.; Huang, X. H.; Nguyen, H. N.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 7509. (d) Han, B.;
Yang, X. L.; Wang, C.; Bai, Y. W.; Pan, T. C.; Chen, X.; Yu, W. J. Org.
Chem. 2012, 77, 1136. (e) Yuan, H.; Yoo, W. J.; Miyamura, H.;
Kobayashi, S. Adv. Synth. Catal. 2012, 354, 2899. (f) Brasche, G.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932. (g) Saha, P.;
Ramana, T.; Purkait, N.; Ali, M. A.; Paul, R.; Punniyamurthy, T. J. Org.
Chem. 2009, 74, 8719.
(4) (a) Kumar, R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42,
1121. (b) Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46,
412. (c) Zhang, C.; Tang, C. H.; Jiao, N. Chem. Soc. Rev. 2012, 41,
3464.
(5) Samanta, R.; Matcha, K.; Antonchick, A. P. Eur. J. Org. Chem.
2013, 2013, 5769.
K2S2O8 transformed TEMPO into an oxoammonium salt that
operated as the primary oxidant and hydrogen acceptor.9 In this
oxidation system, substrate 3 was oxidized to iminium
intermediate A, which then underwent an intramolecular
Friedel−Craft reaction to give intermediate B. Further
oxidation afforded the hydroquinone C, which was finally
aromatized to give the stable product quinazoline 4.
In summary, we have developed an unusual solvent- or
oxidant-switchable direct synthesis of quinazolines and
benzimidazoles from the common N-alkyl-N′-arylamidine
under metal- and base-free conditions. This is the first example
to achieve the chemoselectivity between oxidative sp3C−H/
sp2C−H and N−H/sp2C−H coupling simply by the choice of
solvent or oxidant, affording a broad range of multisubstituted
quinazolines and benzimidazoles in excellent yields.
(6) (a) Yan, Y. Z.; Zhang, Y. H.; Feng, C. T.; Zha, Z. G.; Wang, Z. Y.
Angew. Chem., Int. Ed. 2012, 51, 8077. (b) Zhang, J. T.; Zhu, D. P.; Yu,
C. M.; Wan, C. F.; Wang, Z. Y. Org. Lett. 2010, 12, 2841. (c) Yan, Y.
Z.; Wang, Z. Y. Chem. Commun. 2011, 47, 9513. (d) Han, B.; Wang,
C.; Han, R. F.; Yu, W.; Duan, X. Y.; Fang, R.; Yang, X. L. Chem.
Commun. 2011, 47, 7818. (e) Huang, J. B.; He, Y. M.; Wang, Y.; Zhu,
Q. Chem.Eur. J. 2012, 18, 13964. (f) Zhang, C.; Zhang, L. R.; Jiao,
N. Green Chem. 2012, 14, 3273. (g) Alla, S. K.; Kumar, R. K.; Sadhu,
P.; Punniyamurthy, T. Org. Lett. 2013, 15, 1334.
(7) Lin, J. P.; Long, Y. Q. Chem. Commun. 2013, 49, 5313.
(8) (a) Uneyama, K.; Kobayashi, M. J. Org. Chem. 1994, 59, 3003.
(b) Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2011,
133, 16382. (c) Kikugawa, Y.; Nagashima, A.; Sakamoto, T.;
Miyazawa, E.; Shiiya, M. J. Org. Chem. 2003, 68, 6739. (d) Zhdankin,
V. V.; Koposov, A. Y.; Yashin, N. V. Tetrahedron Lett. 2002, 43, 5735.
(9) Mancheno, O. G.; Stopka, T. Synthesis-Stuttgart 2013, 45, 1602.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, reaction conditions screening,
compound characterization data, and copies of NMR spectra.
D
dx.doi.org/10.1021/ol500864r | Org. Lett. XXXX, XXX, XXX−XXX