Organic Letters
Letter
Scheme 2. Preparation of the Chiral Alkyne syn-12 Starting
from Optically Enriched Alcohol anti-9
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the DFG (SFB749) and the LMU Munich for
financial support. We also thank Albemarle (Hoechst,
Germany) for the generous gift of chemicals. J.S. thanks the
FCI Foundation for a fellowship.
ee), we have prepared the alcohol anti-9 (dr = 2:98) in 5 steps
and 42% overall yield.9e This alcohol was converted to the
corresponding iodide (syn-10) with complete inversion of
configuration (dr = 97:3) using an Appel reaction.9 An I/Li
exchange, followed by a transmetalation with CuBr·P(OEt)3,
furnished the intermediate copper reagent syn-11, which was
converted, after a cross-coupling with 4a, to the syn-alkyne syn-
12 in 56% yield and dr = 93:7 (97% ee13).
REFERENCES
■
(1) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 16, 4467−4470. (b) Sonogashira, K.; Yatake, T.; Tohda, Y.;
Takahashi, S.; Hagihara, N. J. Chem. Soc., Chem. Commun. 1977, 291−
292. (c) Tohda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 1977,
777−778. (d) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara,
́
N. Synthesis 1980, 1980, 627−630. (e) Chinchilla, R.; Najera, C. Chem.
Furthermore, the 1,3-functionalized secondary alkyl iodide
2R,4RS-13 was prepared starting from 8 in 4 steps9c and 69%
overall yield (see Scheme 3). The addition of 2R,4RS-13 to a
Rev. 2007, 107, 874−922.
(2) For a review about Pd-catalyzed alkynylation, see: Negishi, E.-i.;
Anastasia, L. Chem. Rev. 2003, 103, 1979−2018.
(3) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135.
(4) Negishi, E.-i.; Okukado, N.; King, A. O.; Van Horn, D. E.;
Spiegel, B. I. J. Am. Chem. Soc. 1978, 100, 2254−2256.
Scheme 3. Preparation of the Chiral Alkyne syn-15 Starting
from Optically Enriched Alkyl Iodide (13)
(5) (a) Commercon, A.; Normant, J. F.; Villieras, J. Tetrahedron
1980, 36, 1215. (b) Yeh, M. C. P.; Knochel, P. Tetrahedron Lett. 1989,
30, 4799−4802.
(6) (a) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E. Org.
React. 2001, 58, 417. (b) Cahiez, G.; Gager, O.; Buendia, J. Angew.
Chem., Int. Ed. 2010, 49, 1278−1281.
(7) Thaler, T.; Guo, L.-N.; Mayer, P.; Knochel, P. Angew. Chem., Int.
Ed. 2011, 50, 2174−2177.
(8) (a) Clayden, J. In Organolithiums: Selectivity for Synthesis, 1st ed.;
Baldwin, J. E., Williams, R. M., Eds.; Tetrahedron Organic Chemistry
Series; Pergamon: Oxford, 2002; Vol. 23. (b) Nicolaou, K. C.; Chen, J.
S.; Classics in Total Synthesis III: Further Targets, Strategies, Methods,
11th ed.; Wiley-VCH: Weinheim, 2011. (c) Ter Horst, B.; Feringa, B.
L.; Minnaard, A. J. Chem. Commun. 2010, 46, 2535. (d) Beutner, G. L.;
Denmark, S. E. Angew. Chem., Int. Ed. 2013, 52, 9086−9096.
(e) Burns, M.; Essafi, S.; Bame, J. R.; Bull, S. P.; Webster, M. P.;
Balieu, S.; Dale, J. W.; Butts, C. P.; Harvey, J. N.; Aggarwal, V. K.
Nature 2014, 513, 183. (f) Zhang, W. Z.; Chu, J. C. K.; Oberg, K. M.;
Rovis, T. J. Am. Chem. Soc. 2015, 137, 553−555. (g) Eppe, G.; Didier,
D.; Marek, I. Chem. Rev. 2015, 115, 9175−9206. (h) Meng, F.; Li, X.;
Torker, S.; Shi, Y.; Shen, X.; Hoveyda, A. H. Nature 2016, 537, 387.
(i) Li, X.; Meng, F.; Torker, S.; Shi, Y.; Hoveyda, A. H. Angew. Chem.,
solution of t-BuLi (inverse addition, 2.5 equiv, −100 °C) led,
after epimerization (−50 °C, 30 min),9c to the chelate-
stabilized lithium reagent 14. Subsequent transmetalation
with CuBr·P(OEt)3 led to the corresponding alkylcopper
reagent, which underwent a smooth cross-coupling reaction
with 4a, leading to the enantiomerically enriched alkyne 2R,4R-
15 in 53% yield and dr = 93:7 (99% ee13).
In summary, we have shown that α-chiral alkynes are readily
obtained with high diastereoselectivity using a stereoselective I/
Li exchange at −100 °C, followed by a retentive trans-
metalation with CuBr·P(OEt)3 and further cross-coupling with
various bromoalkynes. This method allows preparation of α-
chiral alkynes with two stereocontrolled centers in up to 99%
ee. Extensions of this method are currently underway in our
laboratories.
Int. Ed. 2016, 55, 9997−10002. (j) Muller, D. S.; Marek, I. Chem. Soc.
̈
Rev. 2016, 45, 4552−4566. (k) Semakul, N.; Jackson, K. E.; Paton, R.
S.; Rovis, T. Chem. Sci. 2017, 8, 1015−1020. (l) Casoni, G.;
Kucukdisli, M.; Fordham, J. M.; Burns, M.; Myers, E. L.; Aggarwal,
V. K. J. Am. Chem. Soc. 2017, 139, 11877−11886. (m) Wu, J.; Lorenzo,
P.; Zhong, S.; Ali, M.; Butts, C. P.; Myers, E. L.; Aggarwal, V. K. Nature
2017, 547, 436−440.
(9) For recent I/Li exchange examples, see: (a) Seel, S.; Dagousset,
G.; Thaler, T.; Frischmuth, A.; Karaghiosoff, K.; Zipse, H.; Knochel, P.
Chem. - Eur. J. 2013, 19, 4614−4622. (b) Dagousset, G.; Moriya, K.;
Mose, R.; Berionni, G.; Karaghiosoff, K.; Knochel, P. Angew. Chem.,
Int. Ed. 2014, 53, 1425−1429. (c) Moriya, K.; Didier, D.; Simon, M.;
Hammann, J. M.; Berionni, G.; Karaghiosoff, K.; Zipse, H.; Mayr, H.;
Knochel, P. Angew. Chem., Int. Ed. 2015, 54, 2754−2757. (d) Moriya,
K.; Simon, M.; Mose, R.; Karaghiosoff, K.; Knochel, P. Angew. Chem.,
Int. Ed. 2015, 54, 10963−10967. (e) Morozova, V.; Moriya, K.; Mayer,
P.; Knochel, P. Chem. - Eur. J. 2016, 22, 9962−9965. (f) Morozova, V.;
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Full experimental details; 1H and 13C NMR spectra
C
Org. Lett. XXXX, XXX, XXX−XXX