1988
Organometallics 2009, 28, 1988–1991
Nickel(II), Palladium(II), and Platinum(II) η3-Allyl Complexes
Bearing a Bidentate Titanium(IV) Phosphinoamide Ligand: A
TirM2 Dative Bond Enhances the Electrophilicity of the π-Allyl
Moiety
Hironori Tsutsumi,† Yusuke Sunada,‡ Yoshihito Shiota,‡ Kazunari Yoshizawa,‡ and
Hideo Nagashima*,†,‡
Institute for Materials Chemistry and Engineering and Graduate School of Engineering Sciences,
Kyushu UniVersity, Kasuga, Fukuoka 816-8580, Japan
ReceiVed NoVember 21, 2008
Chart 1
Summary: Three Ti-M2 (M2 ) Ni, Pd, Pt) heterobimetallic
complexes, [(η3-methallyl)M2(Ph2PNtBu)2TiCl2](OTf), were syn-
thesized in which a TiIVrM2 interaction was suggested by
crystallography and DFT calculations. The TiIVrM2 interaction
enhanced electrophilicity of the η3-methallyl ligand of M2,
leading to high reactiVity of the η3-methallyl moiety with Et2NH
compared with that of the dppp analogue.
The importance of bidentate phosphine ligands in modern
organometallic chemistry is well recognized, particularly for
molecular catalysts useful for organic and polymer synthesis.1
The structural design of metal-phosphine complexes is estab-
lished by controlling the bulkiness of the substituents on the
phosphorus atoms, the cone angle, and the bite angle.1 In
contrast, the electronic properties of the bidentate phosphine
ligands are often tuned by the donor property of the substituents
bonded to the phosphorus atoms, which is estimated by
Tolman’s ꢀ value (Chart 1, A).1 A unique bidentate phosphine
ligand, which is not explained by the ꢀ value, has been
developed by Yoshifuji and Ozawa, in which effective use of a
phosphorus analogue of a R-diimine ligand results in emphasiz-
ing back-donation from the metal center to the ligand (Chart 1,
B).2 The third approach for the electronic control is use of the
metalloligand of type C in Chart 1, in which a metallic species
is incorporated in a structure of the phosphines. For instance, a
bidentate phosphorus ligand having a Lewis acidic boron center
in the ligand backbone coordinates to a Rh or Au atom; existence
of a M2fB dative bond in C-1 is suggested in the literature.3,4
C-2 type complexes are also synthesized, which are proposed
to have M2fM1 (M1 ) Ti, Zr, M2 ) Rh, Pt) interactions.5
In these preceding papers, the M2fM1 interaction has been
discussed on the basis of the metal-metal bond distance of the
crystal structure, 11B and/or 31P NMR spectroscopy, and
(4) A notable related complex of C-1, [R2B-(CH2PPh2)2Pt+R(THF)],
with no direct M-B bond interaction was reported by Peters et al. In this
complex, the electron-donating property of the borate moiety enhanced the
electron density of phosphorus atoms, which resulted in higher electron
density of the Pt center, leading to successful C-H bond activation of arenes.
See: (a) Thomas, S. J.; Peters, J. C. J. Am. Chem. Soc. 2001, 123, 5100. (b)
Thomas, S. J.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 8870.
(5) (a) Choukroun, R.; Iraq, A.; Gervais, D.; Daran, J. -C.; Jeannin, Y.
Organometallics 1987, 6, 1197. For closely related examples, see: (b)
Ferguson, G. S.; Wolczanski, P. T.; Pa´rka´nyi, L.; Zonnevylle, M. C.
Organometallics 1988, 7, 1967. (c) Baxter, S. M.; Ferguson, G. S.;
Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 4231.
(6) Hydroformylation of alkenes catalyzed by C-2 has been well
investigated as a typical reaction of heterobimetallic complexes. However,
the rate enhancement observed is usually explained by bimetallic activation
of CO through a Cp2ZrrOdC-M2(CO)n intermediate, and nothing has
been discussed about the effect of the ZrrM2 interaction, which reduces
the electron density of M2 and enhances the electrophilicity of the CO ligand
on M2. See: (a) Cornelissen, C.; Erker, G.; Kehr, G.; Fro¨hlich, R.
Organometallics 2005, 24, 214. (b) Bosch, B. E.; Bru¨mmer, I.; Kunz, K.;
Erker, G.; Fro¨hlich, R.; Kotila, S. Organometallics 2000, 19, 1255. (c)
Cornelissen, C.; Erker, G.; Kehr, G.; Fro¨hlich, R. Dalton Trans. 2005, 24,
4059. (d) See ref 5.
* To whom correspondence should be addressed. E-mail: nagasima@
cm.kyushu-u.ac.jp.
† Graduate School of Engineering Sciences.
‡ Institute for Materials Chemistry and Engineering.
(1) For reviews: (a) Tolman, C. A. Chem. ReV. 1977, 77, 313. (b)
Dierkes, P.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 1999,
1519. (c) van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.;
Dierkes, P. Chem. ReV. 2000, 100, 2741. (d) Appleby, T.; Woollins, J. D.
Coord. Chem. ReV. 2002, 235, 21. (e) Freixa, Z.; van Leeuwen, P. W. N. M.
Dalton Trans. 2003, 1890. (f) Minahan, D. M. A.; Hill, W. E.; McAuliffe,
C. A. Coord. Chem. ReV. 1984, 55, 31.
(2) (a) Minami, T.; Okamoto, H.; Ikeda, S.; Tanaka, R.; Ozawa, F.;
Yoshifuji, M. Angew. Chem., Int. Ed. 2001, 40, 4501. (b) Ozawa, F.;
Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M.
J. Am. Chem. Soc. 2002, 124, 10968. (c) Hayashi, A.; Yoshitomi, T.; Umeda,
K.; Okazaki, M.; Ozawa, F. Organometallics 2008, 27, 1970. (d) Hayashi,
K.; Nakatani, M.; Hayashi, A.; Takano, M.; Okazaki, M.; Toyota, K.;
Yoshifuji, M.; Ozawa, F. Organometallics 2008, 27, 2321. (e) Ozawa, F.;
Yoshifuji, M. Dalton Trans. 2006, 4987.
(3) (a) Bontemps, S.; Gornitzka, H.; Bouhadir, G.; Miqueu, K.;
Bourissou, D. Angew. Chem., Int. Ed. 2006, 45, 1611. (b) Bontemps, S.;
Sircoglou, M.; Bouhadir, G.; Puschmann, H.; Howard, J. A. K.; Dyer, P. W.;
Miqueu, K.; Bourissou, D. Chem. Eur. J. 2008, 14, 731. (c) Sircoglou, M.;
Bontemps, S.; Mercy, M.; Saffon, N.; Takahashi, M.; Bouhadir, G.; Maron,
L.; Bourissou, D. Angew. Chem., Int. Ed. 2007, 46, 8583.
(7) For other examples of early-late heterobimetallic complexes which
can act as catalysts for hydroformylation, see: (a) Choukroun, R.; Gervais,
D.; Kalck, P.; Senocq, F. J. Organomet. Chem. 1987, 335, C9. (b)
Choukroun, R.; Gervais, D.; Rifai, C. Polyhedron 1989, 8, 1760. (c)
Trzeciak, A. M.; Zio´lkowski, J. J.; Choukroun, R. J. Organomet. Chem.
1991, 420, 353. (e) Choukroun, R.; Dahan, F.; Gervais, D.; Rifai, C.
Organometallics 1990, 9, 1982. (f) Mattheis, C.; Braunstein, P.; Fischer,
A. Dalton Trans. 2001, 800. (g) Priya, S.; Balakrishna, M. S.; Mague, J. T.
J. Organomet. Chem. 2004, 689, 3335.
10.1021/om8011085 CCC: $40.75
2009 American Chemical Society
Publication on Web 03/11/2009