endo-Cleavage Induced Anomerization of Pyranosides
R. Natarajan, J. Am. Chem. Soc. 1986, 108, 2425–2430; d) A. J.
Bennet, M. L. Sinnott, J. Am. Chem. Soc. 1986, 108, 7287–
7294; e) A. J. Kirby, P. G. Jones, J. Chem. Soc., Chem. Commun.
1986, 444–445; f) T. H. Fife, T. J. Przystas, J. Chem. Soc. Perkin
Trans. 2 1987, 143–150.
periments in which pyranosides with oxazolidinones were
anomerized by weak Lewis acids, whereas pyranosides
without oxazolidinones did not endo-cleave. The results
from experiments performed on compounds related to the
models are in good agreement with those from the compu-
tations. The calculated structural features indicate that the
strained oxazolidinone groups make endo-cleavage more
feasible. Several factors can influence the stabilization of
the TS energies of pyranosides with oxazolidinone groups,
such as fixing the conformation and/or electronic effects
from the oxazolidinones. Our calculations suggest that there
should be at least three relevant variables to model the reac-
tion coordinates. There are still further possibilities that
lower the reaction paths. Further experimental and theoret-
ical studies to determine the characteristics and precise re-
action paths of the pyranosides with oxazolidinones whilst
considering these variables will reveal the detailed nature of
the anomerization reactions.
[2] C. B. Post, M. Karplus, J. Am. Chem. Soc. 1986, 108, 1317–
1319.
[3] R. B. Gupta, R. W. Franck, J. Am. Chem. Soc. 1987, 109,
6554–6556.
[4] D. R. McPhail, J. R. Le, B. Fraser-Reid, J. Am. Chem. Soc.
1992, 114, 1905–1906.
[5] a) J. L. Liras, E. V. Anslyn, J. Am. Chem. Soc. 1994, 116, 2645–
2646; b) J. L. Liras, V. M. Lynch, E. V. Anslyn, J. Am. Chem.
Soc. 1997, 119, 8191–8200.
[6] a) Y. Guindon, P. C. Anderson, Tetrahedron Lett. 1987, 28,
2485–2488; b) R. Olsson, U. Berg, T. Frejd, Tetrahedron 1998,
54, 3935–3954; c) C. O’Brien, M. Poláková, N. Pitt, M. Tosin,
P. V. Murphy, Chem. Eur. J. 2007, 13, 902–909 and references
cited therein.
[7] P. Deslongchamps, S. Li, Y. L. Dory, Org. Lett. 2004, 6, 505–
508.
[8] a) K. Benakli, C. Zha, R. J. Kerns, J. Am. Chem. Soc. 2001,
123, 9461–9462; b) R. J. Kerns, C. Zha, K. Benakli, Y.-Z. Li-
ang, Tetrahedron Lett. 2003, 44, 8069–8072; c) P. Wei, R. J.
Kerns, Tetrahedron Lett. 2005, 46, 6901–6905; d) M. Boysen,
E. Gemma, M. Lahmann, S. Oscarson, Chem. Commun. 2005,
3044–3046; e) P. Wei, R. J. Kerns, J. Org. Chem. 2005, 70, 4195–
4198; f) M. L. Bohn, M. I. Colombo, C. A. Stortz, E. A.
Rúveda, Carbohydr. Res. 2006, 341, 1096–1104; g) Y. Geng, L.-
H. Zhang, X.-S. Ye, Chem. Commun. 2008, 596–599; h) Y.
Geng, L.-H. Zhang, X.-S. Ye, Tetrahedron 2008, 64, 4949–4958.
[9] a) D. Crich, A. U. Vinod, J. Org. Chem. 2005, 70, 1291–1296;
b) S. Manabe, K. Ishii, Y. Ito, J. Am. Chem. Soc. 2006, 128,
10666–10667.
Experimental Section
To a solution of compound 5a (66.9 mg, 0.128 mmol) in CH2Cl2
(1.7 mL) was added BF3·OEt2 (32 µL, 0.259 mmol) at 0 °C. After
the mixture was stirred at 0 °C for 1 h, saturated NaHCO3 was
added. The aqueous layer was extracted with CHCl3. The com-
bined layers were washed with brine and dried with Na2SO4. After
filtration, the solvent was removed. The residue was purified by
preparative TLC (CHCl3/EtOAc, 20:1) to give 5a (50.6 mg, 76%)
and 5b (3.8 mg, 6%).
[10] J. D. M. Olsson, L. Eriksson, M. Lahmann, S. Oscarson, J.
Org. Chem. 2008, 73, 7181–7188.
[11] S. Manabe, K. Ishii, D. Hashizume, H. Koshino, Y. Ito, Acta
Crystallogr., Sect. E. 2008, 64, o1868-o1868.
Supporting Information (see also the footnote on the first page of
this article): Details of computations and experiments are provided.
[12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tom-
asi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratch-
ian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gom-
perts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A.
Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dap-
prich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q.
Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayak-
kara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Re-
vision C.02, Gaussian, Inc., Wallingford CT, 2004.
[13] Y. Matsuzaki, Y. Nakahara, Y. Ito, T. Ogawa, Tetrahedron Lett.
1993, 34, 1061–1064.
Acknowledgments
Calculations were executed with Obelix of ETH Zürich, a cluster
computer of the Competence Center for Computational Chemistry
(C4). The HA8000 cluster computer (t2k) at Tokyo University and
the RIKEN super combined cluster (RSCC) system were also used
in part. S. M. (RIKEN) thanks Ms. Akemi Takahashi (RIKEN)
for her technical assistance and Ms. Kaori Otsuki and Mr. Masaya
Usui at the Research Resource Center of RIKEN’s Brain Science
Center for performing the high-resolution MS measurements. S. M.
also expresses thanks for the Grant-in-Aid for Scientific Research
(C) (Grant No. 19590032) from the Japan Society for the Pro-
motion of Science and an Incentive Research Grant from RIKEN.
We thank Professor David M. Birney (Texas Tech University) for
valuable discussions.
[1] a) H. Cordes, H. G. Bull, Chem. Rev. 1974, 74, 581–603; b)
A. J. Kirby, Acc. Chem. Res. 1984, 17, 305–311; c) T. H. Fife,
Received: November 17, 2008
Published Online: January 29, 2009
Eur. J. Org. Chem. 2009, 1127–1131
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1131