J. M. Kim et al. / Tetrahedron Letters 50 (2009) 1734–1737
1737
COOMe
COOallyl
COOMe
Ph
Ph
Pd(OAc)2 / PPh3
dry toluene
Pd(OAc)2 / PPh3
Et3N / HCOOH
allyl bromide
Cs2CO3
3a
3a
reflux, 3 h
CH3CN, reflux, 5 h
CH3CN, reflux, 24 h
8 (75%) + 4a (19%)
8 (71%)
9 (65%)
8
NO2
NO2
Scheme 6.
Mashima, K. Org. Lett. 2007, 9, 3371–3374; (f) Kitamura, M.; Tanaka, S.;
Yoshimura, M. J. Org. Chem. 2002, 67, 4975–4977; (g) Burger, E. C.; Tunge, J. A.
Chem. Commun. 2005, 2835–2837; (h) Constant, S.; Tortoioli, S.; Muller, J.;
Lacour, J. Angew. Chem., Int. Ed. 2007, 46, 2082–2085; (i) Burger, E. C.; Tunge, J.
A. Org. Lett. 2004, 6, 2603–2605; (j) Corey, E. J.; William, S. J. Org. Chem. 1973,
38, 3223–3224; (k) Tunge, J. A.; Burger, E. C. Eur. J. Org. Chem. 2005, 1715–1726.
and further references cited therein.
via the novel Pd-mediated decarboxylative protonation protocol as
the key step.
Acknowledgments
This work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD, KRF-2008-
313-C00487). Spectroscopic data were obtained from the Korea Ba-
sic Science Institute, Gwangju branch.
9. For the Pd-mediated decarboxylative allylation and related reactions involving
nitro arene or pyridine moiety, see: (a) Waetzig, S. R.; Tunge, J. A. J. Am. Chem.
Soc. 2007, 129, 14860–14861; (b) Waetzig, S. R.; Tunge, J. A. J. Am. Chem. Soc.
2007, 129, 4138–4139.
10. Typical procedure for the synthesis of 3a and 4a: A mixture of 1a (306 mg,
1.2 mmol), 2a (221 mg, 1.0 mmol), and K2CO3 (207 mg, 1.5 mmol) in CH3CN
(3 mL) was stirred at room temperature for 5 h. After the usual aqueous
workup and column chromatographic purification process (hexanes/CH2Cl2/
EtOAc, 10:1:1), compound 3a was isolated as a white solid, 348 mg (88%). A
stirred mixture of 3a (198 mg, 0.5 mmol), Pd(OAc)2 (6 mg, 5 mol %), PPh3
(13 mg, 10 mol %), HCOOH (25 mg, 0.55 mmol), and Et3N (56 mg, 0.55 mmol)
in CH3CN (3 mL) was heated to reflux for 2 h. After the usual aqueous workup
and column chromatographic purification process (hexanes/EtOAc, 9:1),
References and notes
1. For the general review on Baylis–Hillman reaction, see: (a) Basavaiah, D.; Rao,
A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (b) Ciganek, E.. In
Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol.
51, pp 201–350; (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52,
8001–8062; (d) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627–645; (e) Lee,
K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481–1490; (f)
Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511–4574. and further references
cited therein.
compound 4a was isolated as
a white solid, 140 mg (90%). Selected
spectroscopic data of prepared compounds, 3a, 4a, 4j, and 8 are as follows.
Compound 3a: 88%; white solid, mp 56–58 °C; IR (film) 2951, 1736, 1712,
1522, 1348, 1259 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.20–3.34 (m, 2H), 3.80
;
2. For the synthesis of aryl-substituted rearranged Baylis–Hillman adducts via
Friedel–Crafts reaction, see: (a) Basavaiah, D.; Krishnamacharyulu, M.; Hyma,
R. S.; Pandiaraju, S. Tetrahedron Lett. 1997, 38, 2141–2144; (b) Basavaiah, D.;
Pandiaraju, S.; Padmaja, K. Synlett 1996, 393–395; (c) Basavaiah, D.; Reddy, R.
M. Tetrahedron Lett. 2001, 42, 3025–3027; (d) Lee, H. J.; Seong, M. R.; Kim, J. N.
Tetrahedron Lett. 1998, 39, 6223–6226; (e) Lee, H. J.; Kim, T. H.; Kim, J. N. Bull.
Korean Chem. Soc. 2001, 22, 1063–1064; (f) Das, B.; Majhi, A.; Banerjee, J.;
Chowdhury, N.; Venkateswarlu, K. Chem. Lett. 2005, 34, 1492–1493; (g)
Shanmugam, P.; Rajasingh, P. Chem. Lett. 2005, 34, 1494–1495.
3. For the synthesis of arylated Baylis–Hillman adducts using metal catalyst, see:
(a) Kabalka, G. W.; Venkataiah, B.; Dong, G. Org. Lett. 2003, 5, 3803–3805; (b)
Kabalka, G. W.; Dong, G.; Venkataiah, B.; Chen, C. J. Org. Chem. 2005, 70, 9207–
9210; (c) Navarre, L.; Darses, S.; Genet, J.-P. Chem. Commun. 2004, 1108–1109;
(d) Navarre, L.; Darses, S.; Genet, J.-P. Adv. Synth. Catal. 2006, 348, 317–322; (e)
Kantam, M. L.; Kumar, K. B. S.; Sreedhar, B. J. Org. Chem. 2008, 73, 320–322; (f)
Ranu, B. C.; Chattopadhyay, K.; Jana, R. Tetrahedron Lett. 2007, 48, 3847–3850.
4. Mandal, S. K.; Paira, M.; Roy, S. C. J. Org. Chem. 2008, 73, 3823–3827. and further
(s, 3H), 4.07 (dd, J = 9.3 and 6.6 Hz, 1H), 4.45–4.49 (m, 2H), 5.14–5.21 (m, 2H),
5.72–5.85 (m, 1H), 7.07–7.10 (m, 2H), 7.20 (d, J = 9.0 Hz, 2H), 7.29–7.33 (m,
3H), 7.67 (s, 1H), 7.98 (d, J = 9.0 Hz, 2H); 13C NMR (CDCl3, 75 MHz) d 30.5,
49.9, 52.2, 65.8, 118.5, 123.4, 128.5, 128.6, 128.7, 128.8, 129.2, 131.5, 134.9,
142.3, 145.1, 147.1, 168.0, 171.8; ESIMS m/z 396 (M++1).
Compound 4a: 90%; white solid, mp 77–79 °C; IR (film) 2955, 1706, 1509,
1349, 1248 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.83–2.97 (m, 4H), 3.84 (s, 3H),
;
7.22–7.40 (m, 7H), 7.74 (s, 1H), 8.09 (d, J = 8.7 Hz, 2H); 13C NMR (CDCl3,
75 MHz) d 28.8, 35.0, 52.1, 123.6, 128.5, 128.6, 128.8, 129.2, 131.5, 135.4,
140.6, 146.5, 149.2, 168.4; ESIMS m/z 312 (M++1). Anal. Calcd for C18H17NO4:
C, 69.44; H, 5.50; N, 4.50. Found: C, 69.58; H, 5.37; N, 4.42.
Compound 4f: 88%; pale yellow solid, mp 142–144 °C; IR (film) 2928, 2208,
1511, 1346 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.72–2.78 (m, 2H), 3.07–3.12
;
(m, 2H), 6.84 (s, 1H), 7.34–7.42 (m, 5H), 7.63–7.68 (m, 2H), 8.17 (d, J = 8.7 Hz,
2H); 13C NMR (CDCl3, 75 MHz) d 34.3, 37.5, 109.3, 118.3, 123.9, 128.6, 128.9,
129.4, 130.3, 133.2, 144.8, 146.8, 147.4; ESIMS m/z 279 (M++1). Anal. Calcd
for C17H14N2O2: C, 73.37; H, 5.07; N, 10.07. Found: C, 73.59; H, 5.34; N, 9.86.
references cited therein for the synthetic usefulness of
esters.
a-substituted acrylate
Compound 4j: 97%; pale yellow oil; IR (film) 2951, 1720, 1519, 1346 cmÀ1 1H
;
NMR (CDCl3, 300 MHz) d 3.14 (dd, J = 13.5 and 9.3 Hz, 1H), 3.33 (dd, J = 13.5
and 6.3 Hz, 1H), 3.66 (s, 3H), 4.20 (dd, J = 9.3 and 6.3 Hz, 1H), 5.71 (s, 1H),
6.34 (s, 1H), 7.10–7.25 (m, 7H), 8.02 (d, J = 8.7 Hz, 2H); 13C NMR (CDCl3,
75 MHz) d 40.4, 47.7, 51.9, 123.2, 124.9, 126.8, 128.0, 128.3, 129.7, 140.5,
142.6, 146.3, 147.6, 166.8.
5. For Tsuji’s contribution on Pd-assisted decarboxylative protonation and
allylation, see: (a) Tsuji, J.; Nisar, M.; Shimizu, I. J. Org. Chem. 1985, 50, 3416–
3417; (b) Mandai, T.; Imaji, M.; Takada, H.; Kawata, M.; Nokami, J.; Tsuji, J. J.
Org. Chem. 1989, 54, 5395–5397; (c) Tsuji, J. Pure Appl. Chem. 1986, 58, 869–
878.
6. For the other contributions on Pd-assisted decarboxylative protonation, see: (a)
Marinescu, S. C.; Nishimata, T.; Mohr, J. T.; Stoltz, B. M. Org. Lett. 2008, 10,
1039–1042; (b) Ragoussis, V.; Giannikopoulos, A. Tetrahedron Lett. 2006, 47,
683–687.
Compound 8: 75%; pale yellow oil; IR (film) 2949, 1712, 1519, 1346,
1255 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.26–2.47 (m, 2H), 2.85–3.09 (m,
;
3H), 3.76 (s, 3H), 4.90–4.97 (m, 2H), 5.49–5.61 (m, 1H), 7.01–7.07 (m, 4H),
7.28–7.33 (m, 3H), 7.61 (s, 1H), 7.95 (d, J = 9.0 Hz, 2H); 13C NMR (CDCl3,
75 MHz) d 33.2, 40.0, 44.9, 52.0, 117.0, 123.2, 128.3, 128.4, 128.6, 128.7,
130.8, 135.4, 135.5, 141.0, 146.4, 151.6, 168.4; ESIMS m/z 352 (M++1). Anal.
Calcd for C21H21NO4: C, 71.78; H, 6.02; N, 3.99. Found: C, 71.45; H, 6.23; N,
3.67..
7. For our recent contribution: Gowrisankar, S.; Kim, K. H.; Kim, S. H.; Kim, J. N.
Tetrahedron Lett. 2008, 49, 6241–6244.
8. For some examples on the formation of p-allylmetal complex and its synthetic
applications, see: (a) Blacker, A. J.; Clark, M. L.; Loft, M. S.; Williams, J. M. J.
Chem. Commun. 1999, 913–914; (b) Blacker, A. J.; Clark, M. L.; Loft, M. S.;
Mahon, M. F.; Humphries, M. E.; Williams, J. M. J. Chem. Eur. J. 2000, 6, 353–360;
(c) Kadota, J.; Komori, S.; Fukumoto, Y.; Murai, S. J. Org. Chem. 1999, 64, 7523–
7527; (d) Kadota, J.; Katsuragi, H.; Fukumoto, Y.; Murai, S. Organometallics
2000, 19, 979–983; (e) Utsunomiya, M.; Miyamoto, Y.; Ipposhi, J.; Ohshima, T.;
11. For the regioselective introduction of nucleophiles at the secondary positions
of Baylis–Hillman adducts by using the DABCO salt concept, see: (a) Kim, J. N.;
Kim, J. M.; Lee, K. Y.; Gowrisankar, S. Bull. Korean Chem. Soc. 2004, 25, 1733–
1736; (b) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26,
1481–1490. and further references cited therein.