Crystal data for 3Hꢂ(methanol): C77H85N5O2, M = 1112.50, mono-
clinic, space group P21/c (no. 14), a = 19.251(5), b = 20.011(6),
c = 18.977(7) A, a = 90, b = 111.030(11), g = 901, V = 6824(4) A3,
T = 123(2) K, Z = 4, Dc = 1.124 g cmꢁ3, R1 = 0.0952 for 11 302
observed reflections with [I 4 2s(I)] and wR2 = 0.3085 for all 48 936
unique reflections, GOF = 1.034. Some unassigned electron density
due to severely disordered solvent was removed using the utility
SQUEEZE in the PLATON software package.6 CCDC 707381.w
Crystal data for 3Niꢂ3(dichloroethane): C82H91Cl6N5NiO, M =
1434.01, triclinic, space group P-1 (no .2), a = 14.341(5), b =
15.957(6), c = 17.625(5) A, a = 73.134(11), b = 82.737(12),
the electrolyte, glassy carbon and Ag/AgClO4 as the working
and reference electrodes, respectively, relative to internal
ferrocene/ferrocenium, in CH2Cl2). One-electron oxidation and
reduction waves were observed at 0.43 and ꢁ1.55 V for 2Zn, and
0.36 and ꢁ1.21 V for 3Zn, which leads to estimations of the
HOMO–LUMO gap as 1.98 and 1.57 eV, respectively, in
accordance with their absorption spectra. Similar measurements
revealed the one-electron oxidation and reduction potentials of
3Ni as being 0.51 and ꢁ1.18 V.
g = 69.420(11)1, V = 3864(2) A3, T = 123(2) K, Z = 2, Dc
=
1.232 g cmꢁ3, R1 = 0.0941 for 13 165 observed reflections with
[I 4 2s(I)] and wR2 = 0.2782 for all 29 611 unique reflections,
GOF = 1.048. CCDC 707382.w
Finally, the ability to sensitize the generation of singlet
oxygen was examined by means of the photooxidation of
1,3-diphenylisobenzofuran (DPBF)4 using a xenon lump
equipped with a light filter (4490 nm). Photoirradiation of a
toluene solution of 3Zn or 3H containing DPBF caused clear
absorption spectral changes associated with DPBF oxidation,
which were monitored by the absorbance changes at 416 nm.
Oxopyridochlorins 3Zn and 3H were found to be considerably
robust under these irradiation conditions. The quantum yields
of singlet oxygen formation for 3Zn and 3H in toluene were
determined to be 0.79 and 0.52, respectively, compared to a
reference value (0.73) for tetraphenylporphyrin (TPP).5
In summary, oxopyridochlorins, new pyridine-fused por-
phyrins, have been synthesized efficiently from dibenzoyl-
porphyrins. These oxopyridochlorins displayed weakened
diatropic ring currents as a consequence of their fused pyridine
moiety, as well as their absorption spectra tailing in the near
infrared region, entering significantly the therapeutic window.
Interestingly, protonation of the nitrogen atom in the fused
pyridine ring causes substantial changes in their UV/vis
absorption spectra, thus underscoring the effectiveness of the
peripheral and conjugated coordination site for controlling the
whole porphyrinic p-system by external stimuli. The use of
these pigments for photodynamic therapy is encouraged
because of their abilities to sensitize the generation of singlet
oxygen, despite their low-lying excited states. Moreover, the
red-shift observed in the presence of a Brønsted acid is very
interesting for photodynamic therapy applications, since it is
well known that solid tumors develop regions of acidic
interstitial pH.
For 3Zn and 3Ni, some disorder features were found in certain
substituents and solvent molecules, and appropriately restrained
(see ESIw).
1 (a) H. J. Callot, E. Schaeffer, R. Cromer and F. Metz, Tetrahedron,
1990, 46, 5253; (b) M. J. Crossley, P. L. Burn, S. S. Chew,
F. B. Cuttance and I. A. Newsom, J. Chem. Soc., Chem. Commun.,
1991, 1564; (c) S. Richeter, C. Jeandon, J. P. Gisselbrecht,
R. Ruppert and H. J. Callot, J. Am. Chem. Soc., 2002, 124, 6168;
(d) A. Tsuda and A. Osuka, Science, 2001, 293, 79; (e) H. S. Gill,
M. Harmjanz, J. Santamaria, I. Finger and M. J. Scott, Angew.
Chem., Int. Ed., 2004, 43, 485; (f) D.-M. Shen, C. Liu and
Q.-Y. Chen, Chem. Commun., 2005, 4982; (g) S. Fox and
R. W. Boyle, Chem. Commun., 2004, 1322; (h) K. Kurotobi,
K. S. Kim, S. B. Noh, D. Kim and A. Osuka, Angew. Chem., Int.
Ed., 2006, 45, 3944; (i) O. Yamane, K. Sugiura, H. Miyasaka,
K. Nakamura, T. Fujimoto, K. Nakamura, T. Kaneda, Y. Sakata
and M. Yamashita, Chem. Lett., 2004, 33, 40; (j) N. K. S. Davis,
M. Pawlicki and H. L. Anderson, Org. Lett., 2008, 10, 3945.
2 (a) D. P. Arnold, R. Gaete-Holmes, A. W. Johnson, A. R. P. Smith
and G. A. Williams, J. Chem. Soc., Perkin Trans. 1, 1978, 1660;
(b) M. G. H. Vicente, I. N. Rezzano and K. M. Smith, Tetrahedron
Lett., 1990, 31, 1365; (c) M. G. H. Vicente and K. M. Smith, J. Org.
Chem., 1991, 56, 4407; (d) M. J. Gunter, B. C. Robinson,
J. M. Bulbis and R. T. Tiekink, Tetrahedron, 1991, 47, 7853;
(e) A. Osuka, Y. Ikawa and K. Maruyama, Bull. Chem. Soc. Jpn.,
1992, 65, 3322; (f) A. R. Morgan, D. Skalkos, G. Maguire,
A. Rampersaud, G. Garbo, R. Keck and S. H. Selman, Photochem.
Photobiol., 1992, 55, 133; (g) R. W. Boyle and D. Dolphin, J. Chem.
Soc., Chem. Commun., 1994, 2463; (h) S. N. Mettath, M. Shibata,
J. L. Alderfer, M. O. Senge, K. M. Smith, R. Rein, T. J. Dougherty
and R. K. Pandey, J. Org. Chem., 1998, 63, 1646; (i) G. Li,
A. Graham, W. Potter, Z. D. Grossman, A. Oseroff, T. J.
Dougherty and R. K. Pandey, J. Org. Chem., 2001, 66, 1316.
3 A. K. Sahoo, S. Mori, H. Shinokubo and A. Osuka, Angew. Chem.,
Int. Ed., 2006, 45, 7972.
4 A. N. Kozyrev, V. Suresh, S. Das, M. O. Senge, M. Shibata,
T. J. Dougherty and R. K. Pandey, Tetrahedron, 2000, 56, 3353.
5 W. Spiller, H. Kliesch, D. Wohrle, S. Hackbarth, B. Roder and
G. Schnurpfeil, J. Porphyrins Phthalocyanines, 1998, 2, 145.
6 (a) A. L. Spek, PLATON, A Multipurpose Crystallographic Tool,
Utrecht University, Utrecht, The Netherlands, 2005; (b) A. L. Spek,
Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, 46, C34;
(c) P. V. D. Sluis and A. L. Spek, Acta Crystallogr. A: Found.
Crystallogr., 1990, 46, 194.
Notes and references
z Crystal data for 3Znꢂ2(methanol): C78H87N5O3Zn, M = 1207.90,
triclinic, space group P-1 (no. 2), a = 10.549(15), b = 16.88(3), c =
20.16(3) A, a = 87.34(6), b = 85.64(6), g = 74.93(6)1, V = 3455(9)
A3, T = 123(2) K, Z = 2, Dc = 1.161 g cmꢁ3, R1 = 0.0675 for 11 672
observed reflections with [I 4 2s(I)] and wR2 = 0.2001 for all 14 994
unique reflections, GOF = 1.050. CCDC 707383.w
ꢀc
This journal is The Royal Society of Chemistry 2009
1030 | Chem. Commun., 2009, 1028–1030