converted within 45 min at 25 °C to the 5-zincated species.
Trapping with I2 is furnishing the iodopyrimidine 8a in 83%
yield (entry 4). Reaction with furoyl chloride (after trans-
metalation with CuCN·2LiCl)15 provides the 5-ketopyrimi-
dine 8b in 71% (entry 5). An allylation (after addition of
CuCN·2LiCl) leads to the allyled derivative 8c in 89% (entry
6). Similarly, 2,6-dichloropyrazine (9) is zincated quantita-
tively with TMPZnCl·LiCl (2; 1.1 equiv, 25 °C, 30 min) and
reacted with iodine or undergoes a Negishi16 cross-coupling
or an allylation with ethyl 2-(bro-momethyl)acrylate17 (after
addition of CuCN·2LiCl) affording the expected products
11a-c in 72-90% yields (entries 7-9).
led to the purine derivatives 14a and 14b, respectively, in
74% and 69% yields.
A unique advantage of the zinc base 2 is that very sensitive
functional groups such as a nitro group can be tolerated at
25 °C.20 Thus, 2,4-difluoronitrobenzene (15) was converted
to the corresponding zinc reagent 16 by treatment with
TMPZnCl·LiCl (2; 1.1 equiv, 25 °C, 45 min). A Negishi16
cross-coupling can be readily performed to furnish the aryl
derivative 17a in 92% yield (Scheme 4). Trapping with
benzoyl chloride (after transmetalation with CuCN·2LiCl)15
provides the ketone 17b in 84% yield. After trapping with
I2, the iodobenzene derivative 17c was obtained in 90% yield.
Other sensitive heterocycles such as purines18 can be
metalated as well under mild conditions (Scheme 3). Thus,
Scheme 4. Zincation of 2,4-Difluoronitrobenzene (15) using
TMPZnCl·LiCl (2; 1.1 equiv; 25 °C) and Trapping with
Electrophiles
Scheme 3. Zincation of Caffeine (12) using TMPZnCl·LiCl (2;
1.1 equiv; 25 °C) and Trapping with Electrophiles
caffeine (12)19 undergoes a smooth zincation using TMP-
ZnCl·LiCl (2; 1.1 equiv, 25 °C, 5 min) furnishing the zinc
species 13. Negishi16 cross-coupling or trapping with ethyl
2-(bromomethyl)acrylate17 (after addition of CuCN·2LiCl)
Other sensitive electron-poor arenes and heteroarenes are
metalated as well using the new base 2. Accordingly,
2-chloro-3-nitropyridine (18) undergoes a smooth metalation
with TMPZnCl·LiCl (2; 1.1 equiv, 25 °C, 45 min) furnishing
the zinc species 19. Trapping with 3-bromocyclohexene (after
addition of CuCN·2LiCl) provides the pyridine 20 in 73%
yield. Similarly, 4-fluoro-1-methoxy-2-nitrobenzene (21) was
converted within 6 h at 25 °C to the corresponding zinc
reagent 22. Quenching with ethyl 2-(bromomethyl)acrylate17
(after addition of CuCN·2LiCl) leads to the allyled derivative
23 in 67% yield. Zincation of methyl 5-nitrofuran-2-
carboxylate (24) can also be readily carried out using 2 (1.1
equiv) and furnishes the zinc species 25 in 30 min at 25 °C.
Allylation with 3-bromocyclohexene (after addition of
CuCN·2LiCl) gives the furan 26 in 72% yield (Scheme 5).
An aldehyde is also tolerated.21 Thus, benzo[b]thiophene-
3-carbaldehyde (27) was converted to the zinc species 28 at
(7) (a) Micetich, R. G. Can. J. Chem. 1970, 48, 2006. (b) Meyers, A. I.;
Knaus, G. N. J. Am. Chem. Soc. 1974, 95, 3408. (c) Knaus, G. N.; Meyers,
A. I. J. Org. Chem. 1974, 39, 1189. (d) Miller, R. A.; Smith, M. R.;
Marcune, B. J. Org. Chem. 2005, 70, 9074. (e) Hilf, C.; Bosold, F.; Harms,
K.; Marsch, M.; Boche, G. Chem. Ber. Rec. 1997, 130, 1213.
(8) (a) Kondo, Y.; Shilai, H.; Uchiyama, M.; Sakamoto, T. J. Am. Chem.
Soc. 1999, 121, 3539. (b) Imahori, T.; Uchiyama, M.; Kondo, Y. Chem.
Commun. 2001, 2450. (c) Schwab, P. F. H.; Fleischer, F.; Michl, J. J. Org.
Chem. 2002, 67, 443. (d) Uchiyama, M.; Miyoshi, T.; Kajihara, Y.;
Sakamoto, T.; Otami, Y.; Ohwada, T.; Kondo, Y. J. Am. Chem. Soc. 2002,
124, 8514.
(9) (a) Uchiyama, M.; Matsumoto, Y.; Nobuto, D.; Furuyama, T.;
Yamaguchi, K.; Morokuma, K. J. Am. Chem. Soc. 2006, 128, 8748. (b)
Clegg, W.; Dale, S. H.; Drummond, A. M.; Hevia, E.; Honeyman, G. W.;
Mulvey, R. E. J. Am. Chem. Soc. 2006, 128, 7434. (c) Hevia, E.; Honeyman,
G. W.; Mulvey, R. E. J. Am. Chem. Soc. 2005, 127, 13106. (d) Armstrong,
D. R.; Clegg, W.; Dale, S. H.; Hevia, E.; Hogg, L. M.; Honeyman, G. W.;
Mulvey, R. E. Angew. Chem., Int. Ed. 2006, 45, 3775. (e) Clegg, W.; Dale,
S. H.; Harrington, R. W.; Hevia, E.; Honeyman, G. W.; Mulvey, R. E.
Angew. Chem., Int. Ed. 2006, 45, 2374. (f) Naka, H.; Uchiyama, M.;
Matsumoto, Y.; Wheatly, A. E. H.; McPartlin, M.; Morey, J. V.; Kondo,
Y. J. Am. Chem. Soc. 2007, 129, 1921.
(14) Turck, A.; Trohay, D.; Mojovic, L.; Ple´, N.; Que´guiner, G. J.
Organomet. Chem. 1991, 412, 301.
(10) (a) Wunderlich, S. H.; Knochel, P. Angew. Chem., Int. Ed. 2007,
46, 7685. (b) Mosrin, M.; Knochel, P. Chem.-Eur. J. 2009, 15, 1468. (c)
Hlavinka, M. L.; Hagadorn, J. R. Tetrahedron Lett. 2006, 47, 5049. (d)
Seggio, A.; Chevallier, F.; Vaultier, M.; Mongin, F. J. Org. Chem. 2007,
72, 6602.
(15) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem.
1988, 53, 2390.
(16) Negishi, E. Acc. Chem. Res. 1982, 15, 340.
(17) Villie´ras, J.; Rambaud, M. Org. Synth. 1988, 66, 220.
(18) (a) Boudet, N; Dubbaka, S. R.; Knochel, P. Org. Lett. 2007, 10,
1715. (b) Tobrman, T.; Dvorak, D. Org. Lett. 2006, 8, 1291.
(19) Do, H-Q; Kashif-Khan, R. M.; Daugulis, O. J. Am. Chem. Soc.
2008, 130, 15185.
(11) Wunderlich, S. H.; Knochel, P. Chem. Commun. 2008, 47, 6387.
(12) In the absence of LiCl, the zinc base was much less soluble.
(13) (a) Turck, A.; Ple´, N.; Que´guiner, G. Heterocycles 1990, 37, 2149.
(b) Radinov, R.; Chanev, C.; Haimova, M. J. Org. Chem. 1991, 56, 4793.
(c) Imahori, T; Kondo, Y. J. Am. Chem. Soc. 2003, 125, 8082.
(20) Sapountzis, I.; Knochel, P. Angew. Chem., Int. Ed. 2002, 41, 1610.
Org. Lett., Vol. 11, No. 8, 2009
1839