Formal Syntheses of (()-Stemonamine and
(()-Cephalotaxine
Yu-Ming Zhao, Peiming Gu, Hai-Jun Zhang,
Qing-Wei Zhang, Chun-An Fan, Yong-Qiang Tu,* and
Fu-Min Zhang*
FIGURE 1. Selected polycyclic aza-quaternary alkaloids.
State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou UniVersity,
Lanzhou 730000, P. R. China
fundamental research and drug development.4 However, more
efficient and general approaches to theses alkaloids are still
desirable, especially for challenging construction of polycyclic
aza-quarternary skeletons.
tuyq@lzu.edu.cn; zhangfm@lzu.edu.cn
In connection with our previous investigations,5 we have
recently reported the first total synthesis of (()-stemonamine
(1a) based on the tandem semipinacol rearrangement/Schmidt
reaction.6 This achievement encouraged us to develop alterna-
tively more general and efficient new strategies for this type
and other kinds of complex aza-quaternary alkaloids syntheses.
Herein, we wish to present a concise tactic for formal syntheses
of (()-stemonamine (1a) and (()-cephalotaxine (1b) using the
key Schmidt reaction of the 2-quaternary-1,3-cyclodione sub-
strates.
ReceiVed January 23, 2009
As shown in Scheme 1, our synthetic plan focused on the
construction of crucial tricyclic enone 8 and tetracyclic enone
23, which could be achieved from 6 and 19 through several
transformations including oxidation and aldol cyclization. As
the key strategy level step, intramolecular Schmidt reaction7 of
symmetric azido diones 5 and 18 would provide the desired
aza-quaternary pyrrolo[1,2-a]azepine 6 and aza-quaternary in-
dolizine 19, respectively.
A short and efficient approach to aza-quaternary pyrrolo-
[1,2-a]azepine 8 and aza-quaternary indolizine 23, as the
crucial intermediates for syntheses of stemonamine (1a) and
cephalotaxine (1b), has been developed on the basis of the
key intramolecular Schmidt reaction of symmetric azido-
diones 5 and 18, respectively.
Initially, we selected stemonamine (1a) possessing the basic
structural element of interest as an optimal target to test our
methodology. As shown in Scheme 2, dione 2 was obtained
(4) For recent examples of the synthesis of (()-cephalotaxine, see: (a)
Burkholder, T. P.; Fuchs, P. L. J. Am. Chem. Soc. 1990, 112, 9601. (b) Ishibashi,
H.; Okano, M.; Tamaki, H.; Maruyama, K.; Yakura, T.; Ikeda, M. J. Chem.
Soc., Chem. Commun. 1990, 1436. (c) Ikeda, M.; Okano, M.; Kosaka, K.; Kido,
M.; Ishibashi, H. Chem. Pharm. Bull. 1993, 41, 276. (d) Lin, X.; Kavash, R. W.;
Mariano, P. S. J. Am. Chem. Soc. 1994, 116, 9791. (e) Lin, X.; Kavash, R. W.;
Mariano, P. S. J. Org. Chem. 1996, 61, 7335. (f) Tietze, L. F.; Schirok, H. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1124. (g) Koseki, Y.; Sato, H.; Watanabe, Y.;
Nagasaka, T. Org. Lett. 2002, 4, 885. (h) Li, W.-D. Z.; Wang, Y.-Q. Org. Lett.
2003, 5, 2931. (i) Li, W.-D. Z.; Ma, B.-C. J. Org. Chem. 2005, 70, 3277. (j)
Ma, B.-C.; Wang, Y.-Q.; Li, W.-D. Z. J. Org. Chem. 2005, 70, 4528. (k) Li,
W.-D. Z.; Wang, X.-W. Org. Lett. 2007, 9, 1211. (l) Kuznetsov, N. Y.;
Kolomnikova, G. D.; Khrustalev, V. N.; Golovanov, D. G.; Bubnov, Y. N. Eur.
J. Org. Chem. 2008, 5647. For the synthesis of (-)-cephalotaxine, see: (m) Isono,
N.; Mori, M. J. Org. Chem. 1995, 60, 115. (n) Nagasaka, T.; Sato, H.; Saeki, S.
Tetrahedron: Asymmetry 1997, 8, 191. (o) Ikeda, M.; El Bialy, S. A. A.; Hirose,
K.; Kotake, M.; Sato, T.; Bayomi, S. M. M.; Shehata, I. A.; Abdelal, A. M.;
Gad, L. M.; Yakura, T. Chem. Pharm. Bull. 1999, 47, 983. (p) Tietze, L. F.;
Schirok, H. J. Am. Chem. Soc. 1999, 121, 10264. (q) Planas, L.; Perard- Viret,
J.; Royer, J. J. Org. Chem. 2004, 69, 3087. (r) Eckelbarger, J. D.; Wilmot, J. T.;
Gin, D. Y. J. Am. Chem. Soc. 2006, 128, 10370. (s) Zhao, Z.; Mariano, P. S.
Tetrahedron 2006, 62, 7266. (t) Liu, Q.; Ferreira, E. M.; Stoltz, B. M. J. Org.
Chem. 2007, 72, 7352. (u) Esmieu, W. R.; Worden, S. W.; Catterick, D.; Wilson,
C.; Hayes, C. J. Org. Lett. 2008, 10, 3045. (v) Taniguchi, T.; Ishibashi, H. Org.
Lett. 2008, 10, 4129. (w) Hameed, A.; Blake, A. J.; Hayes, C. J. J. Org. Chem.
2008, 73, 8045.
The alkaloids stemonamine (1a)1 and cephalotaxine (1b)2
(Figure 1) represent a number of natural polycyclic aza-
quaternary alkaloids, respectively. As a potential drug, 1a and
its analogues were used in China and Japan for centuries for
the treatment of respiratory diseases and as insecticides. A
number of derivatives of 1b (i.e., harringtonine and homohar-
ringtonine) have been found to be highly effective for the
treatment of acute human leukemia and are currently undergoing
clinical trials.3 Owing to their unique structures and important
biological activities, 1a and 1b have always attracted consider-
able interest from synthetic organic and medicinal chemists.
Over the past years, a number of great efforts have been made
toward the syntheses of these alkaloids for the purpose of
(1) For reviews on stemona alkaloids, see: (a) Pilli, R. A.; Ferreira de Oliveira,
M. C. Nat. Prod. Rep. 2000, 17, 117. (b) Pilli, R. A.; Rosso, G. B.; de Oliveira,
M. C. F. In The Alkaloids; Cordell, G. A., Ed.; Elsevier: New York, 2005; Vol.
62, pp 77-173. (c) Greger, H. Planta Med. 2006, 72, 99.
(2) For reviews on the cephalotaxus alkaloids, see: (a) Weinreb, S. M.;
Semmelhack, M. F. Acc. Chem. Res. 1975, 8, 158. (b) Huang, L.; Xue, Z. The
Alkaloids; Academic Press: NewYork, 1984; Vol. 23, p 157. (c) JalilMiah, M. A.;
Hudlicky, T.; Reed, J. W. The Alkaloids; Academic Press: San Diego, 1998;
Vol. 51, p 199.
(3) (a) Levy, V.; Zohar, S.; Bardin, C.; Vekhoff, A.; Chaoui, D.; Rio, B.;
Legrand, O.; Sentenac, S.; Rousselot, P.; Raffoux, E.; Chast, F.; Chevret, S.;
Marie, J. P. Br. J. Cancer 2006, 95, 253. (b) Kantarjian, H. M.; Talpaz, M.;
Santini, V.; Murgo, A.; Cheson, B.; O’Brien, S. M. Cancer 2001, 92, 1591.
(5) Gu, P. M.; Zhao, Y.-M.; Tu, Y. Q.; Ma, Y. F.; Zhang, F. M. Org. Lett.
2006, 8, 5271.
(6) Zhao, Y.-M.; Gu, P. M.; Tu, Y.-Q.; Fan, C.-A.; Zhang, Q. W. Org. Lett.
2008, 10, 1763.
(7) Intramolecular Schmidt reaction: (a) Aube´, J.; Milligan, G. L. J. Am.
Chem. Soc. 1991, 113, 8965–8966. (b) Milligan, G. L.; Mossman, C. J.; Aube´,
J. J. Am. Chem. Soc. 1995, 117, 10449–10459.
10.1021/jo900113s CCC: $40.75
Published on Web 03/25/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 3211–3213 3211