This work was enabled by the NSF (CHE 0451241 and
CHE 0553402). We are grateful to Professor G. Mehta for
spectral data of 7 and to Elizabeth Noey for some computa-
tional results. We are indebted to Professor A. Rajca for a
supply of 5 and helpful interactions.
Notes and references
z 9: 1H NMR (400 MHz, CDCl3): d (assignments by COSY and
computation) ¼ 8.51 (d, J ¼ 8.6 Hz, 2 H5), 8.44 (d, J ¼ 7.8 Hz, 2 H4),
8.35 (d, J ¼ 8.6 Hz, 2 H6), 8.20 (d, J ¼ 7.8 Hz, 2 H3), 7.93 (d, J ¼ 5.2 Hz,
2 H2), 7.85 (d, J ¼ 5.2 Hz, 2 H1). 10: 1H NMR (400 MHz, CDCl3): d ¼
7.91 (d, J ¼ 8.0 Hz, 1 H), 7.60 (d, J ¼ 8.4 Hz, 1 H), 7.46 (d, J ¼ 8.0 Hz,
1 H), 7.37 (d, J ¼ 7.6 Hz, 1 H), 7.23 (AB quartet, 2H). 9: 1H NMR
(calculated with GIAO-B3LYP/6-311þG**//BHLYP/6-31G*) d ¼ 8.71
(d, J ¼ 7.9 Hz, H5), 8.58 (d, J ¼ 7.9 Hz, H6), 8.56 (d, J ¼ 7.3 Hz, H4), 8.25
(d, J ¼ 7.3 Hz, H3), 8.02 (d, J ¼ 5.1 Hz, H2), 7.93 (d, J ¼ 5.1 Hz, H1).
1 O. S. Miljanic and K. P. C. Vollhardt, in Carbon-Rich Compounds:
´
From Molecules to Materials, ed. M. M. Haley and
R. R. Tykwinski, Wiley-VCH, Weinheim, 2006, pp. 140–197.
2 For selected reviews, see: C. S. McEnally, L. D. Pfefferle,
B. Atakan and K. Kohse-Hoinghaus, Prog. Energy Combust.
¨
Sci., 2006, 32, 247–294; Z. A. Mansurov, Combust., Explos. Shock
Waves, 2005, 41, 727–744.
Scheme 4 Proposed mechanism of conversion of 5 to 6. Numbers are
energies relative to coronene (kcal molꢀ1), calculated as in Scheme 2.
3 See, e.g.: (a) V. M. Tsefrikas and L. T. Scott, Chem. Rev., 2006,
106, 4868–4884; (b) A. Necula and L. T. Scott, J. Anal. Appl.
Pyrolysis, 2000, 54, 65–87; (c) R. F. C. Brown, Eur. J. Org. Chem.,
1999, 3211–3222; (d) M. Sarobe, H. C. Kwint, T. Fleer, R. W. A.
Havenith, L. W. Jenneskens, E. J. Vlietstra, J. H. van Lenthe and
J. Wesseling, Eur. J. Org. Chem., 1999, 1191–1200.
because of competition by the trajectory in Scheme 2, leading
to phenylene 5 irreversibly.
Finally, a fairly straightforward, if speculative, route to
coronene 6 can be formulated, exploiting the relatively high
symmetry of 5 (Scheme 4). Thus, eight sequential hydrogen
shift/ring contractions, first as they occur during the FVP of
biphenylene itself4 (to G and H; topological change of
fusion: 6/4 to 5/5) and in related isomerizations (to I and J;
topological change of fusion: 6/5 to 5/6)3b,6 would engender
bis-as-indacenyl J. Two subsequent Stone–Wales shifts
(to K and 6) complete the sequence. The skeletal changes
depicted in Schemes 3 and 4 are heuristic and other pathways
may be actually followed, including radical- or H-catalyzed
alternatives.14 Scheme 4 has the benefit that it allows the
tentative assignment of ‘‘unknown’’ 9 as structure K, on the
basis of observed and calculated chemical shifts and coupling
constantsz and by comparison with those of 1,2 : 5,6-dibenzo-
pentafulvene,15 as well as 2D NMR correlations.
4 D. V. Preda and L. T. Scott, Org. Lett., 2000, 2, 1489–1492.
5 D. Bruns, H. Miura, K. P. C. Vollhardt and A. Stanger, Org. Lett.,
2003, 5, 549–552; J. M. Schulman and R. L. Disch, J. Am. Chem.
Soc., 1996, 118, 8470–8474; J. M. Schulman and R. L. Disch,
J. Phys. Chem. A, 1997, 101, 5596–5599.
6 P. I. Dosa, A. Schleifenbaum and K. P. C. Vollhardt, Org. Lett.,
2001, 3, 1017–1020; A. J. Matzger and K. P. C. Vollhardt, Chem.
Commun., 1997, 1415–1416.
7 P. I. Dosa, G. D. Whitener, K. P. C. Vollhardt, A. D. Bond and
S. J. Teat, Org. Lett., 2002, 4, 2075–2078; R. H. Schmidt-Radde
and K. P. C. Vollhardt, J. Am. Chem. Soc., 1992, 114, 9713–9715.
8 M. E. Cracknell, R. A. Kabli, J. F. W. McOmie and D. H. Perry,
J. Chem. Soc., Perkin Trans. 1, 1985, 115–120.
9 M. K. Shepherd, Cyclobutarenes: The Chemistry of Benzocyclo-
butene, Biphenylene and Related Compounds, Elsevier, New York,
1991, pp. 222–223.
10 A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124,
14844–14845.
11 A. Rajca, A. Safronov, S. Rajca, C. R. Ross, II and J. J. Stezowski,
J. Am. Chem. Soc., 1996, 118, 7272–7279.
12 (a) L. Peng and L. T. Scott, J. Am. Chem. Soc., 2005, 127,
16518–16521; (b) G. Mehta and P. V. V. S. Sarma, Chem.
Commun., 2000, 19–20.
13 See: H. F. Bettinger, B. I. Yakobson and G. Scuseria, J. Am. Chem.
Soc., 2003, 125, 5572–5580 and references therein.
14 For selected illustrative papers, see: A. Stirling, M. Iannuzzi,
A. Laio and M. Parrinello, ChemPhysChem, 2004, 5, 1558–1568;
V. V. Kislow and A. M. Mebel, J. Phys. Chem. A, 2007, 111,
9532–9543; M. R. Nimlos, J. Filley and J. T. McKinnon, J. Phys.
Chem. A, 2005, 109, 9896–9903; R. W. Alder and J. N. Harvey,
J. Am. Chem. Soc., 2004, 126, 2490–2494; A. Violi, J. Phys. Chem.
A, 2005, 109, 7781–7787.
In summary, we have demonstrated that higher phenylenes
may be subject to FVPs that can give rise to other phenylene
topologies. In particular, the relatively clean isomerization of 4
to 5 raises the question whether its linear, bent and zig-zag
isomers will find the same trajectory or traverse their own to
yet other C24H12 isomers. In addition, 5 is the only known
fragment of an extended two-dimensional phenylene net,11
and the present synthesis suggests that it might be possible to
access more extended pieces from phenylenes larger than 4,
such as angular [6] and [8]phenylene.1 These avenues are under
exploration.
15 A. Escher, W. Rutsch and M. Neuenschwander, Helv. Chim. Acta,
1986, 69, 1644–1654.
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 1967–1969 | 1969