0.0135. 1c; Empirical formula C53H74N4O0.25P2, FW = 833.10, crystal
ꢀ
system triclinic, space group P1, a = 12.1056(1), b = 20.2299(2),
c = 21.6313(2) A, a = 72.598(1), b = 77.804(1), g = 81.880 (1)1, V =
4923.51(8) A3, Z = 4, rcalcd = 1.124 Mg mꢀ3, m(Mo-Ka) =
0.127 mmꢀ1, reflections collected 57 801, independent reflections
17 212 [Rint = 0.0337]. R1 = 0.0378, wR2 = 0.0956. Data were
Fig. 4 SOMO (left) and LUMO (right) of 1c.
collected on
(1a, 1b) and 150(2) K (1c), solved by direct methods and refined by
a Nonius KappaCCD diffractometer at 180(2) K
full-matrix least squares on F2.19
z Calculations by Oakley on the radical HCN2E2 (E = S, Se) have
ꢁ
shown that accurate estimates of dimerisation energy are not easily
obtained even using large basis sets or additional correlation func-
tions.18 In addition, these are gas-phase calculations which neglect
solvation effects.
1 J. M. Rawson, A. Alberola and A. Whalley, J. Mater. Chem., 2006,
16, 2560.
2 P. P. Power, Chem. Rev., 2003, 103, 78.
3 A. W. Cordes, R. C. Haddon and R. T. Oakley, in Chemistry of
Inorganic Ring Systems, ed. R. Steudel, Elsevier, Amsterdam, 1992,
ch. 16, pp. 295–232.
Fig.
5
(Left) NBO charges (bold) and bond orders in the
[(CH)2(NMe)2P]2 dimer, and (right) bonding interaction between
radicals in the HOMO.
4 A. Armstrong, T. Chivers and R. T. Boere, The Diversity of Stable
´
of 1a–c discussed previously. Calculations on the dimer
[(CH)2(NMe)2P]2 at the B3LYP/6-31G level revealed it to be
a minimum on the potential energy surface and showed a small
dimerisation energy (DE) of B3 kJ molꢀ1, perhaps lower than
expected considering the elevated temperatures required to
detect EPR signals. Accurate estimates of dimerisation ener-
gies of radicals are, however, difficult to obtainz (being highly
dependent on the basis set used) though the observation of a
stable dimer on the potential energy surface is significant.
Solution is viable at accessible temperatures. The calculated
parameters are consistent with a weakly s-bonded dimer
formed through a trans-cofacial p*–p* interaction equivalent
to a 2c–2eꢀ P–P bond involving p-orbitals (Fig. 5).
and Persistent Phosphorus-Containing Radicals, Modern Aspects
of Main Group Chemistry, ACS Symp. Ser., 2006, 917, 66.
5 M. J. S. Gynane, A. Hudson, M. F. Lappert and P. P. Power,
J. Chem. Soc., Chem. Commun., 1976, 623; M. J. S. Gynane,
A. Hudson, M. F. Lappert, P. P. Power and H. Goldwhite,
J. Chem. Soc., Dalton Trans., 1980, 2428.
6 S. Loss, A. Magistrato, L. Cataldo, S. Hoffmann, M. Geoffroy,
U. Rothlisberger and H. Grutzmacher, Angew. Chem., Int. Ed.,
2001, 40, 723.
¨
7 Y. Canac, A. Baceiredo, W. W. Schoeller, D. Gigmes and
G. Bertrand, J. Am. Chem. Soc., 1997, 119, 7579.
8 S. Marque, Y. Berchadsky, K. Lang, M. Moussavi, A. Fournel,
P. Bertrand, E. Belorizky and P. Tordo, J. Phys. Chem. A, 1997,
101, 5640.
9 S. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B.
MacDonald, R. J. Wiacek, A. H. Voigt, A. H. Cowley,
M. F. Lappert, G. Gunderson, J. A. C. Clyburne and
P. P. Power, J. Am. Chem. Soc., 2001, 123, 9045.
10 J-P. Bezombes, K. B. Borisenko, P. B. Hitchcock, M. F. Lappert,
J. E. Nycz, D. W. H. Rankin and H. E. Robertson, Dalton Trans.,
2004, 1980.
In conclusion, applying simple isoelectronic principles has
allowed us to predict homolytic cleavage of the P–P bonds in
dimers of the type [(CH)2(NR)2P]2 and to establish a new class
of 7p radicals.
11 F. Garcıa, R. J. Less, V. Naseri, M. McPartlin, J. M. Rawson and
´
D. S. Wright, Angew. Chem., Int. Ed., 2007, 46, 7827.
12 E. G. Awere, N. Burford, R. C. Haddon, S. Parsons, J. Passmore,
J. V. Waszczak and P. S. White, Inorg. Chem., 1990, 29, 4821.
13 (a) D. Gudat, A. Haghverdi, H. Hupfer and M. Nieger,
Chem.–Eur. J., 2000, 6, 3414; (b) S. Burck, D. Gudat, M. Neiger
and W.-W. du Mont, J. Am. Chem. Soc., 2006, 128, 3946.
14 S. Burck, D. Gudat and M. Neiger, Angew. Chem., Int. Ed., 2004,
43, 4801.
15 Cambridge Crystallographic Database (ConQuest) 21 October
2008. I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler,
C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr.,
B, 2002, 58, 389.
16 (a) B. Tumanskii, P. Pine, Y. Apeloig, N. J. Hill and R. West, J. Am.
Chem. Soc., 2004, 126, 7786; (b) B. Tumanskii, P. Pine, Y. Apeloig,
N. J. Hill and R. West, J. Am. Chem. Soc., 2005, 127, 8248.
17 The geometry optimisations were undertaken using DFT with a
B3LYP functional (A. D. Becke, Phys. Rev., 1988, A38, 3098;
A. D. Becke, J. Chem. Phys., 1993, 98, 5648) using GAMESS-UK
(M. F. Guest, I. J. Bush, H. J. J. van Dam, P. Sherwood, J. M. H.
Thomas, J. H. van Lenthe, R. W. A Havenith and J. Kendrick,
Mol. Phys., 2005, 103, 719). NBO analysis utilised a routine within
GAMESS-UK based upon Version 3.0 of the NBO program from
the Quantum Chemistry Program Exchange (No. 408, 1980)
(A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988,
88, 899).
Notes and references
z All manipulations were performed using Schlenk-line techniques
under an atmosphere of dry argon. Chloro-diazaphospholenes were
synthesised according to published procedures.13b The synthesis of 1a
is described below. Compounds 1b and 1c were obtained in crystalline
form using a similar procedure, but have only currently been obtained
in low yields. Optimised syntheses of both will be published in a full
paper on this work in due course. Synthesis of 1a, [1,10,3,30-tetra-tert-
butyl-1,10,3,30-tetrahydro-2-20-bi(1,3,2-diazaphosphole)]: Mg powder
(21 mg, 0.85 mmol) was added to a solution of 1,3-bis(tert-butyl)-2-
chloro-1,3,2-diazaphospholene (200 mg, 0.85 mmol) in 5 ml thf, and
the mixture stirred overnight at room temperature. The volume of
solvent was then reduced to approx. 1 ml and the mixture left to
crystallise at ꢀ20 1C for 1 d. The pale yellow crystals were filtered and
dried in vacuo. Yield 66 mg, 39%. 1H NMR (500 MHz, C6D6): d =
6.02 (t, 4H, CHQCH, JHꢀP = 1.9 Hz), 1.33 (s, 36H, CH3); 13C NMR
(500 MHz, C6D6): d = 121.19 (s, CQC), 54.15 (t, N–C–Me3, JCꢀP
=
7.7 Hz), 30.22 (t, CH3, JCꢀP = 3.9 Hz); 31P{1H} NMR (400 MHz,
C6D6) d = 80.8.
y Crystal data for 1a: Empirical formula C20H40N4P2, FW = 398.50,
crystal system triclinic, space group P1, a = 6.3138(1), b = 9.8033(2),
c = 10.3563(2) A, a = 73.7030(8), b = 72.8375(8), g = 87.2143(9)1,
V = 587.45(2) A3, Z = 1, rcalcd = 1.126 Mg mꢀ3, m(Mo-Ka) =
0.196 mmꢀ1, reflections collected 12 404, independent reflections 4070
[Rint = 0.022]. R1 = 0.0285, wR2 = 0.0802. 1b; Empirical formula
ꢀ
18 A. W. Cordes, C. D. Bryan, W. M. Davis, R. H. de Laat,
S. H. Glarum, J. D. Goddard, R. C. Haddon, R. G. Hicks,
D. K. Kennepohl, R. T. Oakley, S. R. Scott and N. P. C.
Westwood, J. Am. Chem. Soc., 1993, 115, 7232.
19 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal
structures, University of Gottingen, Germany, 1997.
¨
ꢀ
C40H48N4P2, FW = 646.76, crystal system triclinic, space group P1,
a = 8.6059(3), b = 10.2485(4), c = 10.8287(4) A, a = 85.8725(16),
=
b = 74.5382(17), g = 73.0208(14)1, V = 880.36(6) A3, Z = 1, rcalcd
1.220 Mg mꢀ3, m(Mo-Ka) = 0.158 mmꢀ1, reflections collected 9748,
independent reflections 3565 [Rint = 0.067]. R1 = 0.063, wR2
=
ꢂc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 1691–1693 | 1693